Py之seaborn:数据可视化seaborn库(三)的矩阵图可视化之jointplot函数、JointGrid函数、pairplot函数、PairGrid函数、FacetGrid函数的简介、使用方法

简介: Py之seaborn:数据可视化seaborn库(三)的矩阵图可视化之jointplot函数、JointGrid函数、pairplot函数、PairGrid函数、FacetGrid函数的简介、使用方法

 

目录

三、矩阵图可视化

1、jointplot函数:2个变量柱状图(外边缘)+散点图(内中心)可视化,在2个垂直的坐标轴上显示

(1)、柱状图+散点图/矩形密度图可视化:尽量都为类别型特征

(2)、柱状图+六边形图/散点线性回归分析图/等高线核密度图/线性回归的残差图可视化

(3)、2个变量直方曲线(外边缘)+密度图(内中心)可视化:必须都为数值型特征(即可离散int可连续float)

2、JointGrid函数:jointplot其实是JoinGrid的一个封装

(1)、2个变量直方曲线(外边缘)+密度图(内中心)可视化:必须都为数值型特征

(2)、2个变量直方曲线(外边缘)+散点图(内中心,可加趋势线)可视化

3、pairplot函数:pairplot比PairGrid慢

(1)、矩阵关系图:所有特征的多图分析,矩阵分布图(自动全部数值型特征):柱状图(对角线)、散点图

(2)、矩阵分布图(自动全部数值型特征):折线图(对角线)、散点趋势线图

4、PairGrid函数

(1)、矩阵分布图(手动拆分绘制):全散点图

(2)、PairGrid函数矩阵分布图(手动拆分绘制):柱状图(对角线)、散点图

(3)、PairGrid函数矩阵分布图(手动拆分绘制):折线图/柱状图(对角线)、散点趋势线图、等高线图

5、FacetGrid函数

# 矩阵分布图(手动拆分绘制):3个类别分组统计


 

相关文章

Py之seaborn:seaborn库的简介、安装、使用方法之详细攻略

Py之seaborn:数据可视化seaborn库(一)的柱状图、箱线图(置信区间图)、散点图/折线图、核密度图/等高线图、盒形图/小提琴图/LV多框图的简介、使用方法之最强攻略(建议收藏)

Py之seaborn:数据可视化seaborn库(二)的组合图可视化之密度图/核密度图分布可视化、箱型图/散点图、小提琴图/散点图组合可视化的简介、使用方法之最强攻略(建议收藏)

Py之seaborn:数据可视化seaborn库(三)的矩阵图可视化之jointplot函数、JointGrid函数、pairplot函数、PairGrid函数、FacetGrid函数的简介、使用方法之最强攻略(建议收藏)

三、矩阵图可视化

1、jointplot函数:2个变量柱状图(外边缘)+散点图(内中心)可视化,在2个垂直的坐标轴上显示

1.     sns.jointplot(x=cols[0],y=cols[1],data=data_frame,
2.                 kind='scatter',           # scatter 散点图、reg 散点线性回归分析图、hist、hex 六角形图、kde 等高线核密度图、resid 线性回归的残差图,尝试测试-----------------   
3. #                 size=7,space=0.2,ratio=5, #大小、间距、布局高度比、
4.                   )

 

(1)、柱状图+散点图/矩形密度图可视化:尽量都为类别型特征

 

(2)、柱状图+六边形图/散点线性回归分析图/等高线核密度图/线性回归的残差图可视化

2个变量必须都为int类型特征

 

(3)、2个变量直方曲线(外边缘)+密度图(内中心)可视化:必须都为数值型特征(即可离散int可连续float)

 

2、JointGrid函数:jointplot其实是JoinGrid的一个封装

fig=sns.JointGrid(x=cols[0],y=cols[1],data=data_frame,)

(1)、2个变量直方曲线(外边缘)+密度图(内中心)可视化:必须都为数值型特征

 

(2)、2个变量直方曲线(外边缘)+散点图(内中心,可加趋势线)可视化

必须都为数值型特征

 

3、pairplot函数:pairplot比PairGrid慢

1.     sns.pairplot(data_frame,
2.                 hue=cols[0],          # 按照某一字段进行分类
3.                 kind = 'scatter',     # 设置右上,scatter 散点图、reg 散点线性回归分析图
4.                 diag_kind="hist",     # 设置对角线(默认右下),hist 柱状图、kde 密度图
5. #                 palette="husl",     # 设置调色板
6. #                 markers=["o", "s", "D"],  # 设置不同系列的点样式(这里根据参考分类个数)
7. #                 size = 2,           # 图表大小
8. #                 plot_kws={'s':20},    # 设置点大小
9. #                 diag_kws={shade=True,edgecolor='w'},  # 设置对角线柱状图样式
10.                 )

 

(1)、矩阵关系图:所有特征的多图分析,矩阵分布图(自动全部数值型特征):柱状图(对角线)、散点图

(2)、矩阵分布图(自动全部数值型特征):折线图(对角线)、散点趋势线图

 

4、PairGrid函数

1.     g1 = sns.PairGrid(data=data_frame,              # 创建绘图表格区域
2.                      hue=class_col,
3.                      palette="Set2",                # 设置调色板
4. #                      hue_kws={"marker": ["o", "s", "D"]}
5.                     )

 

(1)、矩阵分布图(手动拆分绘制):全散点图

 

(2)、PairGrid函数矩阵分布图(手动拆分绘制):柱状图(对角线)、散点图

 

(3)、PairGrid函数矩阵分布图(手动拆分绘制):折线图/柱状图(对角线)、散点趋势线图、等高线图

 

5、FacetGrid函数

1.     g = sns.FacetGrid(data=data_frame,
2.                       col=cols[0], row=cols[1], 
3.                       hue=cols[2], 
4.                       palette='cool',
5.                       )

 

# 矩阵分布图(手动拆分绘制):3个类别分组统计

 

相关文章
|
15天前
|
数据可视化 数据挖掘 定位技术
Python和Geopandas进行地理数据可视化
【10月更文挑战第22天】本文介绍了如何使用Python和Geopandas进行地理数据可视化和分析,涵盖从准备工作、加载数据、数据探索与处理、地理数据可视化、空间分析与查询到交互式地理数据可视化等内容。通过丰富的代码示例和案例演示,帮助读者掌握地理数据分析的基本方法,为实际应用提供支持。
57 19
|
10天前
|
移动开发 数据可视化 数据挖掘
利用Python实现数据可视化:以Matplotlib和Seaborn为例
【10月更文挑战第37天】本文旨在引导读者理解并掌握使用Python进行数据可视化的基本方法。通过深入浅出的介绍,我们将探索如何使用两个流行的库——Matplotlib和Seaborn,来创建引人入胜的图表。文章将通过具体示例展示如何从简单的图表开始,逐步过渡到更复杂的可视化技术,帮助初学者构建起强大的数据呈现能力。
|
16天前
|
开发者 Python
Python中__init__.py文件的作用
`__init__.py`文件在Python包管理中扮演着重要角色,通过标识目录为包、初始化包、控制导入行为、支持递归包结构以及定义包的命名空间,`__init__.py`文件为组织和管理Python代码提供了强大支持。理解并正确使用 `__init__.py`文件,可以帮助开发者更好地组织代码,提高代码的可维护性和可读性。
17 2
|
26天前
|
数据可视化 数据挖掘 Python
使用Python进行数据可视化:探索与实践
【10月更文挑战第21天】本文旨在通过Python编程,介绍如何利用数据可视化技术来揭示数据背后的信息和趋势。我们将从基础的图表创建开始,逐步深入到高级可视化技巧,包括交互式图表和动态展示。文章将引导读者理解不同图表类型适用的场景,并教授如何使用流行的库如Matplotlib和Seaborn来制作美观且具有洞察力的可视化作品。
47 7
|
25天前
|
数据可视化 定位技术 Python
使用Python进行数据可视化
【10月更文挑战第22天】在这篇文章中,我们将深入探讨如何使用Python进行数据可视化。我们将从基础的图表开始,然后逐步进入更复杂的可视化技术。我们将通过实例代码来展示如何实现这些可视化,以便读者能够更好地理解和应用这些技术。
23 5
|
23天前
|
测试技术 数据安全/隐私保护 Python
探索Python中的装饰器:简化和增强你的函数
【10月更文挑战第24天】在Python编程的海洋中,装饰器是那把可以令你的代码更简洁、更强大的魔法棒。它们不仅能够扩展函数的功能,还能保持代码的整洁性。本文将带你深入了解装饰器的概念、实现方式以及如何通过它们来提升你的代码质量。让我们一起揭开装饰器的神秘面纱,学习如何用它们来打造更加优雅和高效的代码。
|
25天前
|
弹性计算 安全 数据处理
Python高手秘籍:列表推导式与Lambda函数的高效应用
列表推导式和Lambda函数是Python中强大的工具。列表推导式允许在一行代码中生成新列表,而Lambda函数则是用于简单操作的匿名函数。通过示例展示了如何使用这些工具进行数据处理和功能实现,包括生成偶数平方、展平二维列表、按长度排序单词等。这些工具在Python编程中具有高度的灵活性和实用性。
|
27天前
|
数据可视化 Python
使用Python进行数据可视化的初学者指南
【10月更文挑战第20天】本文旨在为编程新手提供一个简洁明了的入门指南,通过Python语言实现数据可视化。我们会介绍如何安装必要的库、理解数据结构,并利用这些知识来创建基本图表。文章将用通俗易懂的语言和示例代码,帮助读者快速掌握数据可视化的基础技能。
31 4
|
28天前
|
Python
python的时间操作time-函数介绍
【10月更文挑战第19天】 python模块time的函数使用介绍和使用。
30 4
|
29天前
|
存储 Python
[oeasy]python038_ range函数_大小写字母的起止范围_start_stop
本文介绍了Python中`range`函数的使用方法及其在生成大小写字母序号范围时的应用。通过示例展示了如何利用`range`和`for`循环输出指定范围内的数字,重点讲解了小写和大写字母对应的ASCII码值范围,并解释了`range`函数的参数(start, stop)以及为何不包括stop值的原因。最后,文章留下了关于为何`range`不包含stop值的问题,留待下一次讨论。
21 1
下一篇
无影云桌面