Py之seaborn:数据可视化seaborn库(三)的矩阵图可视化之jointplot函数、JointGrid函数、pairplot函数、PairGrid函数、FacetGrid函数的简介、使用方法

简介: Py之seaborn:数据可视化seaborn库(三)的矩阵图可视化之jointplot函数、JointGrid函数、pairplot函数、PairGrid函数、FacetGrid函数的简介、使用方法

 

目录

三、矩阵图可视化

1、jointplot函数:2个变量柱状图(外边缘)+散点图(内中心)可视化,在2个垂直的坐标轴上显示

(1)、柱状图+散点图/矩形密度图可视化:尽量都为类别型特征

(2)、柱状图+六边形图/散点线性回归分析图/等高线核密度图/线性回归的残差图可视化

(3)、2个变量直方曲线(外边缘)+密度图(内中心)可视化:必须都为数值型特征(即可离散int可连续float)

2、JointGrid函数:jointplot其实是JoinGrid的一个封装

(1)、2个变量直方曲线(外边缘)+密度图(内中心)可视化:必须都为数值型特征

(2)、2个变量直方曲线(外边缘)+散点图(内中心,可加趋势线)可视化

3、pairplot函数:pairplot比PairGrid慢

(1)、矩阵关系图:所有特征的多图分析,矩阵分布图(自动全部数值型特征):柱状图(对角线)、散点图

(2)、矩阵分布图(自动全部数值型特征):折线图(对角线)、散点趋势线图

4、PairGrid函数

(1)、矩阵分布图(手动拆分绘制):全散点图

(2)、PairGrid函数矩阵分布图(手动拆分绘制):柱状图(对角线)、散点图

(3)、PairGrid函数矩阵分布图(手动拆分绘制):折线图/柱状图(对角线)、散点趋势线图、等高线图

5、FacetGrid函数

# 矩阵分布图(手动拆分绘制):3个类别分组统计


 

相关文章

Py之seaborn:seaborn库的简介、安装、使用方法之详细攻略

Py之seaborn:数据可视化seaborn库(一)的柱状图、箱线图(置信区间图)、散点图/折线图、核密度图/等高线图、盒形图/小提琴图/LV多框图的简介、使用方法之最强攻略(建议收藏)

Py之seaborn:数据可视化seaborn库(二)的组合图可视化之密度图/核密度图分布可视化、箱型图/散点图、小提琴图/散点图组合可视化的简介、使用方法之最强攻略(建议收藏)

Py之seaborn:数据可视化seaborn库(三)的矩阵图可视化之jointplot函数、JointGrid函数、pairplot函数、PairGrid函数、FacetGrid函数的简介、使用方法之最强攻略(建议收藏)

三、矩阵图可视化

1、jointplot函数:2个变量柱状图(外边缘)+散点图(内中心)可视化,在2个垂直的坐标轴上显示

1.     sns.jointplot(x=cols[0],y=cols[1],data=data_frame,
2.                 kind='scatter',           # scatter 散点图、reg 散点线性回归分析图、hist、hex 六角形图、kde 等高线核密度图、resid 线性回归的残差图,尝试测试-----------------   
3. #                 size=7,space=0.2,ratio=5, #大小、间距、布局高度比、
4.                   )

 

(1)、柱状图+散点图/矩形密度图可视化:尽量都为类别型特征

 

(2)、柱状图+六边形图/散点线性回归分析图/等高线核密度图/线性回归的残差图可视化

2个变量必须都为int类型特征

 

(3)、2个变量直方曲线(外边缘)+密度图(内中心)可视化:必须都为数值型特征(即可离散int可连续float)

 

2、JointGrid函数:jointplot其实是JoinGrid的一个封装

fig=sns.JointGrid(x=cols[0],y=cols[1],data=data_frame,)

(1)、2个变量直方曲线(外边缘)+密度图(内中心)可视化:必须都为数值型特征

 

(2)、2个变量直方曲线(外边缘)+散点图(内中心,可加趋势线)可视化

必须都为数值型特征

 

3、pairplot函数:pairplot比PairGrid慢

1.     sns.pairplot(data_frame,
2.                 hue=cols[0],          # 按照某一字段进行分类
3.                 kind = 'scatter',     # 设置右上,scatter 散点图、reg 散点线性回归分析图
4.                 diag_kind="hist",     # 设置对角线(默认右下),hist 柱状图、kde 密度图
5. #                 palette="husl",     # 设置调色板
6. #                 markers=["o", "s", "D"],  # 设置不同系列的点样式(这里根据参考分类个数)
7. #                 size = 2,           # 图表大小
8. #                 plot_kws={'s':20},    # 设置点大小
9. #                 diag_kws={shade=True,edgecolor='w'},  # 设置对角线柱状图样式
10.                 )

 

(1)、矩阵关系图:所有特征的多图分析,矩阵分布图(自动全部数值型特征):柱状图(对角线)、散点图

(2)、矩阵分布图(自动全部数值型特征):折线图(对角线)、散点趋势线图

 

4、PairGrid函数

1.     g1 = sns.PairGrid(data=data_frame,              # 创建绘图表格区域
2.                      hue=class_col,
3.                      palette="Set2",                # 设置调色板
4. #                      hue_kws={"marker": ["o", "s", "D"]}
5.                     )

 

(1)、矩阵分布图(手动拆分绘制):全散点图

 

(2)、PairGrid函数矩阵分布图(手动拆分绘制):柱状图(对角线)、散点图

 

(3)、PairGrid函数矩阵分布图(手动拆分绘制):折线图/柱状图(对角线)、散点趋势线图、等高线图

 

5、FacetGrid函数

1.     g = sns.FacetGrid(data=data_frame,
2.                       col=cols[0], row=cols[1], 
3.                       hue=cols[2], 
4.                       palette='cool',
5.                       )

 

# 矩阵分布图(手动拆分绘制):3个类别分组统计

 

相关文章
|
1月前
|
机器学习/深度学习 存储 数据挖掘
Python图像处理实用指南:PIL库的多样化应用
本文介绍Python中PIL库在图像处理中的多样化应用,涵盖裁剪、调整大小、旋转、模糊、锐化、亮度和对比度调整、翻转、压缩及添加滤镜等操作。通过具体代码示例,展示如何轻松实现这些功能,帮助读者掌握高效图像处理技术,适用于图片美化、数据分析及机器学习等领域。
73 20
|
4天前
|
数据采集 JavaScript Android开发
【02】仿站技术之python技术,看完学会再也不用去购买收费工具了-本次找了小影-感觉页面很好看-本次是爬取vue需要用到Puppeteer库用node.js扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
【02】仿站技术之python技术,看完学会再也不用去购买收费工具了-本次找了小影-感觉页面很好看-本次是爬取vue需要用到Puppeteer库用node.js扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
29 7
【02】仿站技术之python技术,看完学会再也不用去购买收费工具了-本次找了小影-感觉页面很好看-本次是爬取vue需要用到Puppeteer库用node.js扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
|
1天前
|
开发者 Python
Python入门:8.Python中的函数
### 引言 在编写程序时,函数是一种强大的工具。它们可以将代码逻辑模块化,减少重复代码的编写,并提高程序的可读性和可维护性。无论是初学者还是资深开发者,深入理解函数的使用和设计都是编写高质量代码的基础。本文将从基础概念开始,逐步讲解 Python 中的函数及其高级特性。
Python入门:8.Python中的函数
|
28天前
|
测试技术 Python
【03】做一个精美的打飞机小游戏,规划游戏项目目录-分门别类所有的资源-库-类-逻辑-打包为可玩的exe-练习python打包为可执行exe-优雅草卓伊凡-持续更新-分享源代码和游戏包供游玩-1.0.2版本
【03】做一个精美的打飞机小游戏,规划游戏项目目录-分门别类所有的资源-库-类-逻辑-打包为可玩的exe-练习python打包为可执行exe-优雅草卓伊凡-持续更新-分享源代码和游戏包供游玩-1.0.2版本
106 31
【03】做一个精美的打飞机小游戏,规划游戏项目目录-分门别类所有的资源-库-类-逻辑-打包为可玩的exe-练习python打包为可执行exe-优雅草卓伊凡-持续更新-分享源代码和游戏包供游玩-1.0.2版本
|
1月前
|
Python
[oeasy]python057_如何删除print函数_dunder_builtins_系统内建模块
本文介绍了如何删除Python中的`print`函数,并探讨了系统内建模块`__builtins__`的作用。主要内容包括: 1. **回忆上次内容**:上次提到使用下划线避免命名冲突。 2. **双下划线变量**:解释了双下划线(如`__name__`、`__doc__`、`__builtins__`)是系统定义的标识符,具有特殊含义。
32 3
|
1月前
|
JSON 监控 安全
深入理解 Python 的 eval() 函数与空全局字典 {}
`eval()` 函数在 Python 中能将字符串解析为代码并执行,但伴随安全风险,尤其在处理不受信任的输入时。传递空全局字典 {} 可限制其访问内置对象,但仍存隐患。建议通过限制函数和变量、使用沙箱环境、避免复杂表达式、验证输入等提高安全性。更推荐使用 `ast.literal_eval()`、自定义解析器或 JSON 解析等替代方案,以确保代码安全性和可靠性。
45 2
|
1月前
|
存储 人工智能 Python
[oeasy]python061_如何接收输入_input函数_字符串_str_容器_ 输入输出
本文介绍了Python中如何使用`input()`函数接收用户输入。`input()`函数可以从标准输入流获取字符串,并将其赋值给变量。通过键盘输入的值可以实时赋予变量,实现动态输入。为了更好地理解其用法,文中通过实例演示了如何接收用户输入并存储在变量中,还介绍了`input()`函数的参数`prompt`,用于提供输入提示信息。最后总结了`input()`函数的核心功能及其应用场景。更多内容可参考蓝桥、GitHub和Gitee上的相关教程。
16 0
|
2月前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
|
2月前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
2月前
|
Unix Linux 程序员
[oeasy]python053_学编程为什么从hello_world_开始
视频介绍了“Hello World”程序的由来及其在编程中的重要性。从贝尔实验室诞生的Unix系统和C语言说起,讲述了“Hello World”作为经典示例的起源和流传过程。文章还探讨了C语言对其他编程语言的影响,以及它在系统编程中的地位。最后总结了“Hello World”、print、小括号和双引号等编程概念的来源。
126 80

热门文章

最新文章

推荐镜像

更多