AI:2020年6月24日北京智源大会演讲分享之强化学习专题论坛 ——10: 40-11: 10 安波《竞争环境下的强化学习 》

简介: AI:2020年6月24日北京智源大会演讲分享之强化学习专题论坛 ——10: 40-11: 10 安波《竞争环境下的强化学习 》


导读:首先感谢北京智源大会进行主题演讲的各领域顶级教授,博主受益匪浅,此文章为博主在聆听各领域教授或专家演讲时,一张一张截图进行保存,希望与大家一起学习,共同进步,一起见证或筑起人工智能的下一个十年。非常欢迎国内外人工智能领域网友,前来留言探讨与分享,同时感谢点赞或评论!

 

 

 

目录

10: 40-11: 10 竞争环境下的强化学习


 

 

10: 40-11: 10 竞争环境下的强化学习

  • 安波  新加坡南洋理工大学


相关文章
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
构建智能化编程环境:AI 与代码编辑器的融合
在人工智能的推动下,未来的代码编辑器将转变为智能化编程环境,具备智能代码补全、自动化错误检测与修复、个性化学习支持及自动化代码审查等功能。本文探讨了其核心功能、技术实现(包括机器学习、自然语言处理、深度学习及知识图谱)及应用场景,如辅助新手开发者、提升高级开发者效率和优化团队协作。随着AI技术进步,智能化编程环境将成为软件开发的重要趋势,变革开发者工作方式,提升效率,降低编程门槛,并推动行业创新。
|
1天前
|
机器学习/深度学习 传感器 人工智能
AI与环境保护:可持续发展的伙伴
在科技日新月异的时代,人工智能(AI)不仅改变了我们的生活和工作方式,还在环保和可持续发展领域发挥重要作用。AI通过环境监测、资源优化、垃圾分类、绿色出行和环保教育等多方面的应用,为环保事业注入新活力,推动社会向更加绿色、可持续的方向发展。
|
1月前
|
Python 机器学习/深度学习 人工智能
手把手教你从零开始构建并训练你的第一个强化学习智能体:深入浅出Agent项目实战,带你体验编程与AI结合的乐趣
【10月更文挑战第1天】本文通过构建一个简单的强化学习环境,演示了如何创建和训练智能体以完成特定任务。我们使用Python、OpenAI Gym和PyTorch搭建了一个基础的智能体,使其学会在CartPole-v1环境中保持杆子不倒。文中详细介绍了环境设置、神经网络构建及训练过程。此实战案例有助于理解智能体的工作原理及基本训练方法,为更复杂应用奠定基础。首先需安装必要库: ```bash pip install gym torch ``` 接着定义环境并与之交互,实现智能体的训练。通过多个回合的试错学习,智能体逐步优化其策略。这一过程虽从基础做起,但为后续研究提供了良好起点。
106 4
手把手教你从零开始构建并训练你的第一个强化学习智能体:深入浅出Agent项目实战,带你体验编程与AI结合的乐趣
|
29天前
|
机器学习/深度学习 人工智能 TensorFlow
解锁AI潜力:让开源模型在私有环境绽放——手把手教你搭建专属智能服务,保障数据安全与性能优化的秘密攻略
【10月更文挑战第8天】本文介绍了如何将开源的机器学习模型(如TensorFlow下的MobileNet)进行私有化部署,包括环境准备、模型获取与转换、启动TensorFlow Serving服务及验证部署效果等步骤,适用于希望保护用户数据并优化服务性能的企业。
49 4
|
2月前
|
人工智能 前端开发 云计算
本地搭建AI环境
本地搭建AI环境
|
26天前
|
人工智能 供应链 安全
BSI 第七届万物互联智慧高峰论坛:主题:拥抱AI时代,标准赋能组织实现可持续发展
BSI 第七届万物互联智慧高峰论坛:主题:拥抱AI时代,标准赋能组织实现可持续发展
37 0
|
6月前
|
机器学习/深度学习 人工智能 安全
ai集成环境
【4月更文挑战第27天】ai集成环境
76 1
|
3月前
|
Java Spring Apache
Spring Boot邂逅Apache Wicket:一次意想不到的完美邂逅,竟让Web开发变得如此简单?
【8月更文挑战第31天】Apache Wicket与Spring Boot的集成提供了近乎无缝的开发体验。Wicket以其简洁的API和强大的组件化设计著称,而Spring Boot则以开箱即用的便捷性赢得开发者青睐。本文将指导你如何在Spring Boot项目中引入Wicket,通过简单的步骤完成集成配置。首先,创建一个新的Spring Boot项目并在`pom.xml`中添加Wicket相关依赖。
93 0
|
3月前
|
机器学习/深度学习 人工智能 算法
深入探索TensorFlow在强化学习中的应用:从理论到实践构建智能游戏AI代理
【8月更文挑战第31天】强化学习作为人工智能的一个重要分支,通过智能体与环境的互动,在不断试错中学习达成目标。本文介绍如何利用TensorFlow构建高效的强化学习模型,并应用于游戏AI。智能体通过执行动作获得奖励或惩罚,旨在最大化长期累积奖励。TensorFlow提供的强大工具简化了复杂模型的搭建与训练,尤其适用于处理高维数据。通过示例代码展示如何创建并训练一个简单的CartPole游戏AI,证明了该方法的有效性。未来,这项技术有望拓展至更复杂的应用场景中。
39 0
|
3月前
|
机器学习/深度学习 人工智能 算法
在 AI Native 环境中实现自动超参数优化的微调方法
【8月更文第1天】随着人工智能技术的不断发展,深度学习模型的训练变得越来越复杂。为了达到最佳性能,需要对模型进行微调,特别是对超参数的选择。本文将探讨如何在 AI Native 环境下使用自动化工具和技术来优化模型的微调过程。
99 5