AI:2020年6月22日北京智源大会演讲分享之机器感知专题论坛—14:50-15:30吴玺宏教授《一种具身自监督学习框架:面向任何语种语音的音系构建任务》

简介: AI:2020年6月22日北京智源大会演讲分享之机器感知专题论坛—14:50-15:30吴玺宏教授《一种具身自监督学习框架:面向任何语种语音的音系构建任务》


导读:首先感谢北京智源大会进行主题演讲的各领域顶级教授,博主受益匪浅,此文章为博主在聆听各领域教授或专家演讲时,一张一张截图进行保存,希望与大家一起学习,共同进步,一起见证或筑起人工智能的下一个十年。非常欢迎国内外人工智能领域网友,前来留言探讨与分享,同时感谢点赞或评论!

 

目录

14:50-15:30 一种具身自监督学习框架:面向任何语种语音的音系构建任务


 

 

14:50-15:30 一种具身自监督学习框架:面向任何语种语音的音系构建任务

  • 吴玺宏  北京大学

 



相关文章
|
19天前
|
机器学习/深度学习 人工智能 自然语言处理
构建未来的开发环境:AI 驱动的代码助手
随着人工智能技术的进步,AI驱动的代码助手成为提升软件开发效率和代码质量的关键工具。本文探讨了其潜在功能、技术实现及对未来开发的影响。优势包括自动化任务、实时错误检测、个性化辅助和知识共享。技术上,它结合了机器学习、自然语言处理和深度学习,实现代码理解和推荐、智能补全、自动化测试、代码审查及性能优化等功能,使开发更加高效智能。
|
19天前
|
机器学习/深度学习 人工智能 自然语言处理
构建智能化编程环境:AI 与代码编辑器的融合
在人工智能的推动下,未来的代码编辑器将转变为智能化编程环境,具备智能代码补全、自动化错误检测与修复、个性化学习支持及自动化代码审查等功能。本文探讨了其核心功能、技术实现(包括机器学习、自然语言处理、深度学习及知识图谱)及应用场景,如辅助新手开发者、提升高级开发者效率和优化团队协作。随着AI技术进步,智能化编程环境将成为软件开发的重要趋势,变革开发者工作方式,提升效率,降低编程门槛,并推动行业创新。
|
28天前
|
人工智能 数据可视化 API
10 分钟构建 AI 客服并应用到网站、钉钉或微信中测试评
10 分钟构建 AI 客服并应用到网站、钉钉或微信中测试评
67 2
|
23天前
|
人工智能 运维 负载均衡
10 分钟构建 AI 客服并应用到网站、钉钉或微信中
《10分钟构建AI客服并应用到网站、钉钉或微信中》的解决方案通过详尽的文档和示例代码,使具有一定编程基础的用户能够快速上手,顺利完成AI客服集成。方案涵盖高可用性、负载均衡及定制化选项,满足生产环境需求。然而,若文档不清晰或存在信息缺失,则可能导致部署障碍。实际部署中可能遇到网络、权限等问题,需逐一排查。云产品的功能、性能及操作配置便捷性直接影响解决方案效果,详尽的产品手册有助于快速解决问题。总体而言,该方案在各方面表现出色,值得推荐。
|
23天前
|
机器学习/深度学习 人工智能 运维
|
1月前
|
机器学习/深度学习 人工智能 编解码
深入探索AI文生语音技术的奥秘:从文本输入到逼真语音输出的全链条语音合成过程解析
【9月更文挑战第2天】深入探索AI文生语音技术的奥秘:从文本输入到逼真语音输出的全链条语音合成过程解析
 深入探索AI文生语音技术的奥秘:从文本输入到逼真语音输出的全链条语音合成过程解析
|
15天前
|
人工智能 自然语言处理 API
深入浅出 LangChain 与智能 Agent:构建下一代 AI 助手
我们小时候都玩过乐高积木。通过堆砌各种颜色和形状的积木,我们可以构建出城堡、飞机、甚至整个城市。现在,想象一下如果有一个数字世界的乐高,我们可以用这样的“积木”来构建智能程序,这些程序能够阅读、理解和撰写文本,甚至与我们对话。这就是大型语言模型(LLM)能够做到的,比如 GPT-4,它就像是一套庞大的乐高积木套装,等待我们来发掘和搭建。
|
17天前
|
人工智能
解决方案评测|10分钟构建AI客服并应用到聊天系统中获奖名单公布
10分钟构建AI客服并应用到聊天系统中获奖名单公布!!!
|
28天前
|
人工智能 自然语言处理 数据管理
Step By Step 体验10 分钟在公众号和企微中构建自己的AI客服
为提升用户体验与竞争力,企业纷纷构建AI助手实现7x24小时客户服务。在阿里云平台上,仅需十分钟即可完成AI助手的搭建并发布至微信公众号或企业微信。流程包括创建大模型应用、引入AI助手至微信平台、导入私有知识以增强功能,以及将助手集成至企业微信中。此方案操作简便,文档详尽,可快速打造专属AI助手。但现有方案在错误提示、知识库构建指导及部署流程简化方面仍有待改进。
|
1月前
|
机器学习/深度学习 人工智能 算法
首个像人类一样思考的网络!Nature子刊:AI模拟人类感知决策
【9月更文挑战第8天】近日,《自然》子刊发表的一篇关于RTNet神经网络的论文引起广泛关注。RTNet能模拟人类感知决策思维,其表现与人类相近,在反应时间和准确率上表现出色。这项研究证明了神经网络可模拟人类思维方式,为人工智能发展带来新启示。尽管存在争议,如是否真正理解人类思维机制以及潜在的伦理问题,但RTNet为人工智能技术突破及理解人类思维机制提供了新途径。论文详细内容见《自然》官网。
41 3

热门文章

最新文章