AI:2020年6月22日北京智源大会演讲分享之09:40-10:10Mari 教授《基于显式上下文表征的语言处理》、10:10-10:40周明教授《多语言及多模态任务中的预训练模型》

简介: AI:2020年6月22日北京智源大会演讲分享之09:40-10:10Mari 教授《基于显式上下文表征的语言处理》、10:10-10:40周明教授《多语言及多模态任务中的预训练模型》


导读:首先感谢北京智源大会进行主题演讲的各领域顶级教授,博主受益匪浅,此文章为博主在聆听各领域教授或专家演讲时,一张一张截图进行保存,希望与大家一起学习,共同进步,一起见证或筑起人工智能的下一个十年。非常欢迎国内外人工智能领域网友,前来留言探讨与分享,同时感谢点赞或评论!

 

 

目录

09:40-10:10  基于显式上下文表征的语言处理

10:10-10:40 多语言及多模态任务中的预训练模型


 

 

 

09:40-10:10  基于显式上下文表征的语言处理

  • Mari Ostendorf  华盛顿大学教授

 

 

10:10-10:40 多语言及多模态任务中的预训练模型

  • 周明  微软亚洲研究院副院长,国际计算语言学协会(ACL)主席

 

相关文章
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
当语言遇见智慧火花:GPT家族历代模型大起底,带你见证从平凡到卓越的AI进化奇迹!
【10月更文挑战第6天】随着自然语言处理技术的进步,GPT系列模型(Generative Pre-trained Transformers)成为该领域的明星。从GPT-1的开创性工作,到GPT-2在规模与性能上的突破,再到拥有1750亿参数的GPT-3及其无需微调即可执行多种NLP任务的能力,以及社区驱动的GPT-NeoX,这些模型不断进化。虽然它们展现出强大的语言理解和生成能力,但也存在如生成错误信息或偏见等问题。本文将对比分析各代GPT模型的特点,并通过示例代码展示其部分功能。
122 2
|
2月前
|
人工智能 安全 搜索推荐
北大计算机学院再登国际AI顶刊!张铭教授团队揭露医疗AI致命漏洞
【10月更文挑战第17天】北京大学计算机学院张铭教授团队在国际顶级人工智能期刊上发表重要成果,揭示了医疗AI系统中的致命漏洞——“模型反演”。该漏洞可能导致误诊和医疗事故,引起学术界和工业界的广泛关注。研究强调了医疗AI系统安全性评估的重要性。
40 1
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
扩散引导语言建模(DGLM):一种可控且高效的AI对齐方法
DGLM(Diffusion Guided Language Modeling)是一种新型框架,结合了自回归模型的流畅性和扩散模型的灵活性,解决了现有引导生成方法的局限性。DGLM通过扩散网络生成语义提案,并使用轻量级提示生成器将嵌入转化为软提示,引导自回归解码器生成文本。该方法无需微调模型权重,易于控制新属性,并在多个基准数据集上表现出色。实验结果显示,DGLM在毒性缓解、情感控制和组合控制等方面优于现有方法,为可控文本生成提供了新的方向。
49 10
扩散引导语言建模(DGLM):一种可控且高效的AI对齐方法
|
2月前
|
人工智能 安全 搜索推荐
北大计算机学院再登国际AI顶刊!张铭教授团队揭露医疗AI致命漏洞
【10月更文挑战第16天】北京大学张铭教授团队在国际顶级人工智能期刊上发表重要成果,揭示了医疗AI系统中的致命漏洞——“模型反演”。该漏洞可使攻击者通过特定数据样本误导AI诊断,引发误诊风险。此发现引起广泛关注,强调了医疗AI安全评估的重要性。
53 4
|
2月前
|
人工智能 自然语言处理
从迷茫到精通:揭秘模型微调如何助你轻松驾驭AI新热点,解锁预训练模型的无限潜能!
【10月更文挑战第13天】本文通过简单的问题解答形式,结合示例代码,详细介绍了模型微调的全流程。从选择预训练模型、准备新任务数据集、设置微调参数,到进行微调训练和评估调优,帮助读者全面理解模型微调的技术细节和应用场景。
74 6
|
3月前
|
人工智能 测试技术
语言图像模型大一统!Meta将Transformer和Diffusion融合,多模态AI王者登场
【9月更文挑战第20天】Meta研究人员提出了一种名为Transfusion的创新方法,通过融合Transformer和Diffusion模型,实现了能同时处理文本和图像数据的多模态模型。此模型结合了语言模型的预测能力和Diffusion模型的生成能力,能够在单一架构中处理混合模态数据,有效学习文本与图像间的复杂关系,提升跨模态理解和生成效果。经过大规模预训练,Transfusion模型在多种基准测试中表现出色,尤其在图像压缩和模态特定编码方面具有优势。然而,其训练所需的大量计算资源和数据、以及潜在的伦理和隐私问题仍需关注。
73 7
|
4月前
|
存储 边缘计算 人工智能
【边缘计算与AI】分析边缘计算在处理AI任务、优化响应速度和数据隐私保护方面的作用和潜力
边缘计算与AI的结合是当前技术发展的重要趋势,两者相互依存、相互促进,共同推动着数字化转型的深入发展。以下是对边缘计算与AI关系的详细分析
97 6
|
4月前
|
人工智能 数据处理
通义语音AI技术问题之行动项识别任务中的问题如何解决
通义语音AI技术问题之行动项识别任务中的问题如何解决
33 5
|
4月前
|
人工智能 语音技术
通义语音AI技术问题之Qwen-Audio对多任务预训练中的干扰问题如何解决
通义语音AI技术问题之Qwen-Audio对多任务预训练中的干扰问题如何解决
38 2
|
4月前
|
人工智能 JavaScript Go
介绍 Agency: 使AI与Go语言无缝对接
介绍 Agency: 使AI与Go语言无缝对接