成功解决ValueError: numpy.ufunc size changed, may indicate binary incompatibility. Expected 216 from C h

简介: 成功解决ValueError: numpy.ufunc size changed, may indicate binary incompatibility. Expected 216 from C h

 

目录

解决问题

解决思路

解决方法


 

 

 

解决问题

ValueError: numpy.ufunc size changed, may indicate binary incompatibility. Expected 216 from C header, got 192 from PyObject

 

 

解决思路

值错误:numpy.ufunc大小改变,可能表示二进制不兼容。C header预期216,PyObject预期192

 

 

 

解决方法

numpy版本过低导致,需要对numpy版本进行升级即可!

pip install --upgrade numpy

更新后出现错误:

1. from scipy.linalg import _fblas
2. ImportError: DLL load failed: 找不到指定的模块。

重新更新:pip install --user numpy-1.17.4+mkl-cp36-cp36m-win_amd64.whl

 


相关文章
|
3月前
|
Python
A module that was compiled using NumPy 1.x cannot be run in NumPy 2.0.0 as it may crash. To support
本文讨论了在NumPy 2.0.0版本更新后可能出现的兼容性问题,并提供了通过降级NumPy版本至1.x的解决方法,以支持尚未更新的模块或库。
|
Python
解决办法:RuntimeWarning: numpy.dtype size changed, may indicate binary incompatibility. Expected 96
解决办法:RuntimeWarning: numpy.dtype size changed, may indicate binary incompatibility. Expected 96
551 0
成功解决ValueError: numpy.ufunc size changed, may indicate binary incompatibility. Expected 216 from C h
成功解决ValueError: numpy.ufunc size changed, may indicate binary incompatibility. Expected 216 from C h
成功解决ValueError: numpy.ufunc size changed, may indicate binary incompatibility. Expected 216 from C h
|
1月前
|
存储 关系型数据库 MySQL
一个项目用5款数据库?MySQL、PostgreSQL、ClickHouse、MongoDB区别,适用场景
一个项目用5款数据库?MySQL、PostgreSQL、ClickHouse、MongoDB——特点、性能、扩展性、安全性、适用场景比较
|
1月前
|
存储 分布式计算 数据库
阿里云国际版设置数据库云分析工作负载的 ClickHouse 版
阿里云国际版设置数据库云分析工作负载的 ClickHouse 版
|
2月前
|
存储 SQL 缓存
数据库测试|Elasticsearch和ClickHouse的对决
由于目前市场上主流的数据库有许多,这次我们选择其中一个比较典型的Elasticsearch来和ClickHouse做一次实战测试,让大家更直观地看到真实的比对数据,从而对这两个数据库有更深入的了解,也就能理解为什么我们会选择ClickHouse。
数据库测试|Elasticsearch和ClickHouse的对决
|
1月前
|
存储 关系型数据库 MySQL
四种数据库对比MySQL、PostgreSQL、ClickHouse、MongoDB——特点、性能、扩展性、安全性、适用场景
四种数据库对比 MySQL、PostgreSQL、ClickHouse、MongoDB——特点、性能、扩展性、安全性、适用场景
|
5月前
|
DataWorks API 调度
DataWorks产品使用合集之在调度配置配置了节点的上游节点输出,没办法自动生成这个flow的依赖,该怎么操作
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
5月前
|
DataWorks 安全 关系型数据库
DataWorks产品使用合集之建了 polar 与clickhouse的数据源。为什么数据库这里总是mysql呢
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
4月前
|
存储 大数据 关系型数据库
从 ClickHouse 到阿里云数据库 SelectDB 内核 Apache Doris:快成物流的数智化货运应用实践
目前已经部署在 2 套生产集群,存储数据总量达百亿规模,覆盖实时数仓、BI 多维分析、用户画像、货运轨迹信息系统等业务场景。