目录
Disc and Drum Brake Dynamometer Squeal Noise Test Procedure盘式和鼓式制动器测功器噪声试验程序
2.1 Applicable Documents 适用的文件
2.2 Related Publications 相关的出版物
7. PARTS PREPARATION AND TEST SETUP 零件准备和测试设置
7.2 Microphone location 麦克风的位置
7.3 Noise measurements settings 噪声测量设置
8.1 Dynamic Brake Application 动态制动应用
8.2 Brake Drag Application for low-speed and backward/forward modules制动阻力应用于低速和前进/后退模块
8.4 Brake fade temperatures 制动失效温度
9. TEST SEQUENCES NOMENCLATURE 测试序列命名法
10. DISC BRAKE TEST PARAMETERS AND TEST MATRIX盘式制动器试验参数及试验矩阵
10.1 Summary for disc brake test matrix 盘式制动器试验矩阵总结
10.2 Pressure profiles and constant pressure sequences for disc brakes盘式制动器的压力分布和恒压序列
10.3 Test matrix and parameters 测试矩阵及参数
11. DRUM BRAKE TEST PARAMETERS AND TEST MATRIX鼓式制动器试验参数及试验矩阵
11.1 Summary for drum brake test matrix 鼓式制动器试验矩阵汇总
11.2 Pressure profiles and constant pressure sequences for drum brakes鼓式制动器的压力分布和恒压序列
11.3 Test matrix and parameters测试矩阵及参数
12. NOISY BRAKE APPLICATIONS 嘈杂的制动应用程序
12.1 Frequency ranges to report noisy brake applications: 频率范围报告有噪声的刹车应用:
12.2 At least one peak equal to or greater 至少有一个峰值等于或大于
13. SUMMARY OF TEST RESULTS 测试结果摘要
14. TEST INPUT PARAMETERS AND SETUP PER EKB 3010根据EKB 3010测试输入参数和设置
引用格式:[1]Disc and Drum Brake Dynamometer Squeal Noise Test Procedure. SAE. SAE J2521 APR2013 . 2013
Disc and Drum Brake Dynamometer Squeal Noise Test Procedure
盘式和鼓式制动器测功器噪声试验程序
RATIONALE 基本原理
The current revision of the SAE J2521 includes updates and changes to
|
当前修订SAE J2521包括更新和修改
|
FOREWORD 前言
In the early 1990s a European working group including car manufacturers, braking system suppliers, and friction material companies, developed a dynamometer test procedure known as the AK Noise. This procedure uses two main modes
|
上世纪90年代初,一个包括汽车制造商、制动系统供应商和摩擦材料公司在内的欧洲工作组开发了一种名为AK噪音的测功器测试程序。本程序使用两种主要模式
|
Both test matrixes (disc and drum) include three main schedules:
|
两种试验矩阵(圆盘和鼓形)都包括三个主要时间表:
|
This recommended practice establishes the minimum standard set of specifications regarding test setup, inertiadynamometer characteristics, test sequence, and test report items. Deviations from or changes to this procedure to accommodate a specific project are feasible as long as they are discussed and agreed upon among the interested parties prior to commencing the actual staging and the testing activities. | 本推荐操作规定了有关试验装置、惯性测功机特性、试验顺序和试验报告项目的最低标准规范集。为适应特定项目而偏离或更改本程序是可行的,只要相关方在开始实际分期和测试活动之前讨论并达成一致。 |
SAE Technical Standards Board Rules provide that: “This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user.” SAE reviews each technical report at least every five years at which time it may be revised, reaffirmed, stabilized, or cancelled. SAE invites your written comments and suggestions. Copyright © 2013 SAE International All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE. TO PLACE A DOCUMENT ORDER: Tel: 877-606-7323 (inside USA and Canada) Tel: +1 724-776-4970 (outside USA) Fax: 724-776-0790 Email: CustomerService@sae.org SAE WEB ADDRESS: http://www.sae.org |
美国汽车工程师学会(SAE)技术标准委员会(Technical Standards Board)规则规定:“本报告由美国汽车工程师学会(SAE)发布,旨在推进技术和工程科学的发展。本报告的使用完全是自愿的,其适用性和适用性,包括由此产生的任何专利侵权,是用户的唯一责任。”SAE至少每五年审查一次技术报告,届时可能会对其进行修订、重申、稳定或取消。SAE邀请您提出书面意见和建议。 版权所有©2013 SAE国际保留所有权利。未经SAE事先书面许可,不得以任何形式或任何方式复制、存储在检索系统中或以电子、机械、影印、记录或其他方式传播本出版物的任何部分。 下文件订单: 电话:877-606-7323(美国和加拿大境内) 电话:+1724-776-4970(美国境外) 传真:724-776-0790 电子邮箱:CustomerService@sae.org SAE网址:http://www.SAE.org |
1. SCOPE 范围
The SAE J2521 procedure is applicable to high frequency squeal noise occurrences for on-road passenger car and light trucks below 4,540 kg of GVWR. The procedure incorporates high temperature and low temperature test matrixes, but does not fully account for the effects of the environment on brake squeal. Much research is currently underway in this area and can potentially be incorporated in future revisions. For the purposes of this test procedure, squeal is defined as peak noise levels equal to or above 70 dB(A) between 1.25 kHz and 16 kHz for tests using a full suspension corners or full axle assemblies, or between 2 kHz and 16 kHz for brakes not using a full suspension corner. |
SAE J2521程序适用于额定车辆总重低于4540 kg的公路客车和轻型卡车的高频尖叫噪声。该程序包含了高温和低温测试矩阵,但没有充分考虑环境对制动尖叫的影响。目前在这方面正在进行许多研究,并有可能纳入今后的修订。 在本试验程序中,对于使用全悬挂转角或全轴总成的试验,尖叫声定义为1.25 kHz和16 kHz之间等于或高于70 dB(A)的峰值噪声级,对于不使用全悬挂转角的制动器,尖叫声定义为2 kHz和16 kHz之间的峰值噪声级。 |
Before using this Recommended Practice for chassis dynamometer testing, review in detail the specifics related to at least (a) instrumentation including in-cabin microphones, (b) threshold levels for noise detection, (c) temperature control priority between front and rear axles, (d) vehicle loading and load distribution, (e) cooling air and environmental conditioning, and (f) detailed nomenclature and labeling of channels and sensors. | 在使用本推荐操作进行底盘测功机测试之前,详细审查至少与(a)仪表(包括车内麦克风)相关的细节,(b)噪声检测的阈值水平,(c)前轴和后轴之间的温度控制优先级,(d)车辆负载和负载分配,(e) 冷却空气和环境调节,以及(f)通道和传感器的详细命名和标签。 |
1.1 Purpose 目的
This recommended test practice is intended to establish a common method to perform a series of screening test sequences that identify the propensity of a brake assembly to generate squeal noise under a variety of test conditions. The result is an evaluation of brake noise under a set of defined braking conditions that are believed most relevant to braking system development for automobiles. | 本推荐试验规程旨在建立一种通用方法,以执行一系列筛选试验顺序,以确定制动总成在各种试验条件下产生尖叫噪声的倾向。其结果是在一组被认为与汽车制动系统开发最相关的规定制动条件下对制动噪声进行评估。 |
A disc brake application matrix and a drum brake application matrix are defined to describe the test conditions and steps to investigate the influence of pressure, temperature and velocity on squeal noise behavior. Each matrix is intended to replicate vehicle tests to get a fair comparison for different brake corner components. | 定义了盘式制动器应用矩阵和鼓式制动器应用矩阵,描述了研究压力、温度和速度对尖叫噪声行为影响的试验条件和步骤。每个矩阵旨在复制车辆测试,以获得不同制动角部件的公平比较。 |
2. REFERENCES 参考文献
2.1 Applicable Documents 适用的文件
The following publications form a part of this specification to the extent specified herein. Unless otherwise indicated, the latest issue of SAE publications shall apply. | 以下出版物在此规定的范围内构成本规范的一部分。除另有注明外,最新一期的SAE出版物均适用。 |
2.1.1 SAE Publications Available from SAE International, 400 Commonwealth Drive, Warrendale, PA 15096-0001, Tel: 877-606-7323 (inside USA and Canada) or 724-776-4970 (outside USA), www.sae.org. SAE J2789 Inertia Calculation for Single-Ended Dynamometer Testing |
2.1.1可从国际汽车工程师学会获得的汽车工程师学会出版物, 沃伦代尔联邦大道400号, 宾夕法尼亚州15096-0001, 电话:877-606-7323(美国和加拿大境内)或724-776-4970(美国境外), 网址:www.sae.org。 SAE J2789单端测功机试验的惯性计算 |
2.1.2 VDA publications Available from the German Association of the Automotive Industry VDA (Verband der Automobilindustrie e.V.), Behrenstr. 35, 10117 Berlin, or http://www.vda.de/en/publikationen/publikationen_downloads/ VDA 300 Development Guideline on Quality Control of Disc Brake Linings VDA 303 Description of Noisy Brake Applications Concerning Brake Squeal VDA 305 Data Exchange Format Description VDA 306 Definition of charts for the evaluation of brake noise data / Dynamometer | 2.1.2德国汽车工业协会VDA(Verband der Automobilindustrie e.V.),Behrenstr提供的VDA出版物。3510117柏林,或http://www.vda.de/en/publikationen/publikationen_下载/ VDA 300盘式制动器衬片质量控制发展指南 VDA 303有关制动器尖叫声的噪声制动应用说明 VDA 305数据交换格式说明 VDA 306制动噪声数据/测功机评估图表的定义 |
2.2 Related Publications 相关的出版物
Available from SAE International, 400 Commonwealth Drive, Warrendale, PA 15096-0001, Tel: 877-606-7323 (inside USA and Canada) or 724-776-4970 (outside USA), www.sae.org. SAE J2598 Automotive Disc Brake Pad Natural Frequency and Damping Test SAE J2625 Automotive Vehicle Brake Squeal Test Recommend Practice SAE J2786 Automotive Brake Noise and Vibration Standard Nomenclature SAE J2933 Verification of Brake Rotor Modal Frequencies SAE J3001 Brake Insulator Damping Measurement Procedure IEC 61672-1 Electroacoustics - Sound level meters - Part 1: Specifications IEC 61672-2 Electroacoustics - Sound level meters - Part 2: Pattern evaluation tests IEC 61672-3 Electroacoustics - Sound level meters - Part 3: Periodic tests | 可从美国汽车工程师学会国际部购买,地址:400 Commonwealth Drive,Warrendale, 宾夕法尼亚州15096-0001, 电话:877-606-7323(美国和加拿大境内)或724-776-4970(美国境外), 网址:www.sae.org。 SAE J2598汽车盘式刹车片固有频率和阻尼试验 SAE J2625汽车制动尖叫试验推荐规程 汽车制动噪声与振动标准术语 SAE J2933制动盘模态频率的验证 SAE J3001制动绝缘体阻尼测量程序IEC 61672-1电声学-声级计 -第1部分:规范IEC 61672-2电声学-声级计 -第2部分:模式评估试验IEC 61672-3电声学声级计 -第3部分:定期试验 |
3. DEFINITIONS定义
To facilitate the application of this SAE Recommended Practice, the following definitions apply. | 为便于本SAE推荐实施规程的应用,以下定义适用 |
3.1 APPARENT FRICTION FOR DISC BRAKES Per Equation 1: Where: μ = apparent friction for disc brakes / unitless | 3.1盘式制动器的表观摩擦: 根据公式1:式中:μ=盘式制动器的表观摩擦/无单位 |
3.2 DRUM BRAKE EFFECTIVENESS (C*) Per Equation 2: Where: C* = effectiveness for drum brakes / unitless T = output torque / N·m p = brake pressure / kPa Threshold p = minimum pressure required to start developing braking torque. Unless otherwise indicated by the test requestor or measured as part of the project, use a zero value / kPa AP = total piston area acting on one side of the caliper for disc brakes; or total wheel cylinder area for drum brakes / mm2 eff r = radial distance from centerline of the piston to the axis of rotation for disc brakes; internal drum diameter divided by 2 for drum brakes, unless other dimensions are provided by the requestor / mm = brake efficiency. Unless otherwise indicated by the test requestor or measured as part of the project, use 1 (100%) For dynamic brake applications calculate the average-by-distance friction coefficient or effectiveness value between t1 and t2 per item 8.1. For brake drag applications calculate the average-by-time friction coefficient or effectiveness value between t1 and t3 per item 8.2. |
3.2鼓式制动器有效性(C*) 根据公式2: 式中:C*=鼓式制动器的有效性/无单元T=输出扭矩/N·m p=制动压力/kPa阈值p=开始产生制动扭矩所需的最小压力。除非测试请求者另有指示或作为项目的一部分来测量,使用零值/KPA AP=作用在盘式制动器的卡钳一侧的总活塞面积;或鼓式制动器的总轮缸面积/MM2 EFR R=从活塞中心线到盘式制动器的旋转轴线的径向距离;鼓式制动器的内部鼓轮直径除以2,除非请求者提供其他尺寸/mm=制动效率。除非试验请求者另有说明或作为项目一部分进行测量,否则使用1(100%)进行动态制动应用,根据第8.1项计算t1和t2之间的平均距离摩擦系数或有效性值。对于制动阻力应用,根据第8.2项计算t1和t3之间的平均时间摩擦系数或有效性值。 |
3.3 GROSS VEHICLE WEIGHT – GVWR Maximum vehicle weight indicated by the manufacturer / kgf |
3.3车辆总重-GVWR 由制造商/ kgf指示的最高车辆重量 |
3.4 BRAKING SPEED Linear speed at the onset of the brake application during stops or snubs where the speed reduces during the brake application |
3.4制动速度 在制动开始时的线速度,在制动过程中速度会降低 |
3.5 DRAG SPEED Linear speed at the onset of the brake application during drag events where the speed remains constant during the brake application |
3.5拖速 在制动过程中,制动开始时的线速度,在制动过程中速度保持不变 |
3.6 INITIAL BRAKE TEMPERATURE - IBT Rotor or drum temperature at the start of the brake application / °C |
3.6初始制动温度- IBT转子或滚筒启动时的温度为制动应用温度/℃ |
3.7 TIRE DYNAMIC ROLLING RADIUS Equivalent tire radius that will generate the Revolutions Per Mile (RPM) published by the tire manufacturer for the specific tire size per Equation 3. Use the tire dynamic rolling radius to calculate the dynamometer rotational speed for a given linear vehicle speed / mm π RPM RR 2 1 609 344 (Eq. 3) Where: RR = tire dynamic rolling radius / mm RPM = tire manufacturer specification for revolutions per mile and typically shown for the tire size on the manufacturer’s website |
3.7轮胎动态滚动半径 等效轮胎半径,该半径将产生轮胎制造商根据方程式3公布的特定轮胎尺寸的每英里转数(RPM)。使用轮胎动态滚动半径计算给定线性车辆速度/mmπRPM RR2 1 609 344(公式3)的测功机转速,其中:RR=轮胎动态滚动半径/mm RPM=轮胎制造商每英里转数规范,通常显示在制造商网站上的轮胎尺寸 |
4. TEST EQUIPMENT 测试设备
4.1 Single-ended brake inertia-dynamometer capable of performing dynamic brake applications with deceleration- or pressure-controlled brake applications. Also, capable of conducting brake drag at constant pressure, and brake drags with brake pressure profiles. | 4.1单端制动惯性测力计,能够执行动态制动应用与减速或压力控制制动应用。此外,能够进行制动阻力恒定的压力,制动阻力与制动压力分布。 |
4.2 Reversible motor and drive control capable of conducting the brake drag applications at no less than 90 % of the nominal drag speed. NOTE: Calculate motor torque based on the highest of the three following values (a) brake drag at base speed and 32.5 bar brake pressure, (b) acceleration rate during brake fade modules, and (c) motor torque used for inertiasimulation during dynamic brake applications. | 4.2可逆转电机和驱动控制,能够在不低于公称阻力速度90%的情况下进行制动阻力应用。注:根据以下三个值中的最高值计算电机转矩:(a)基本速度下的制动阻力和32.5 bar制动压力;(b)制动衰减模块时的加速度;(c)动态制动时用于惯性调节的电机转矩。 |
4.3 Control system capable of performing brake applications at constant pressure, pressure profiles, or constant deceleration (torque control) 4.3.1 Pressure ramp rate of at least 100 bar/s (see item 8.1) and a maximum pressure of at least 160 bar 4.3.2 Overshoot of less than 1 bar during dynamic brake applications 4.3.3 Average pressure control within 0.25 bar of target value (set-point) during pressure profiles 4.3.4 Deceleration control and overshoot within 0.5 m/s² of target value (set-point) |
4.3能够在恒压、压力剖面或恒减速(扭矩控制)条件下进行制动应用的控制系统 4.3.1压力斜坡速率至少为100 bar/s(见8.1项),最大压力至少为160 bar 4.3.2动态制动时超调小于1 bar 4.3.3压力剖面时平均压力控制在目标值(设定值)0.25 bar以内 4.3.4减速控制和过度在0.5 m / s²的目标值(设定值) |
4.4 Cooling air system directed at the brake. 4.4.1 Control the air speed such that it will not be so high as to blow away wear debris or create noise above the background limit of 64 dB(A) above 900 Hz. The cooling air remains on during the brake events. NOTE 1: The 64 dB(A) limit provides 6 dB(A) separation which is a 2:1 separation or half the threshold limit to detect noisy brake events above 70 dB(A) NOTE 2: Depending upon the project, other threshold levels could be more appropriate, like brake noise evaluation for electric vehicles. In such cases, confirm with the test requestor and the testing facility. 4.4.2 Set up the duct outlet 300 to 400 mm away from the rotor outside diameter with air duct with a hydraulic diameter (200-300) mm. Adjust cooling air to 10 m/s (35 km/h) measured at the duct outlet; if needed, adjust to meet the background noise level from item 4.4.1. NOTE 1: In cases where the above conditions cannot be achieved, define with the test requestor and document it on the final test report NOTE 2: Alternatively, adjust cooling air flow between 1 000 to 2 000 m³/h while ensuring background noise level per 4.4.1 NOTE 3: Since the cooling air setup is a critical subsystem of the inertia dynamometer which effects test variability and test duration, ensure proper definitions and test conditions are defined for the test project. Measure airflow, assess cooling rates at specific temperatures and test speeds, review cycle times, and observe overall temperature regimes during the tests to better understand the conditions and effects on noise and friction behavior. 4.4.3 Optional - Environmental control system. Except for the cold modules below 25 °C, control brake cooling air temperature to 25 °C ± 5 °C, and relative humidity to 50 %RH ± 10 %RH - equivalent to 7.90 to 11.93 g/kg, or 9,24 to 13.86 g/m3 absolute humidity at sea level and 25 °C. Use a psychrometric chart to find acceptable air temperature and relative humidity combinations. During cold modules below the dew point of the environmental control system, control only the cooling air temperature. See Figure 1 for two typical setups of cooling air for disc brake assemblies. Document on the test report the actual cooling air orientation relative to the brake and the brake rotation. NOTE 1: It is recommended during cold sections to set the cooling air temperature approximately 10 °C below the IBT NOTE 2: In order to keep similar and consistent cooling behavior of the brake assembly (including noise insulators or shims) for the same project, in addition to keeping the cooling air setup the same, use the same fixture orientation (left- or right-hand) in agreement with the test requestor and the testing facility |
4.4冷却空气系统针对刹车。 4.4.1控制空气速度,使其不会高到吹走磨损碎片或产生超过背景限制的噪音,即在900hz以上的64分贝(A)。在刹车过程中,冷却空气一直处于开启状态。 注1:64 dB(A)的限制提供了6 dB(A)的分离度,即2:1的分离度,或检测超过70 dB(A)的噪声制动事件的阈值限制的一半。 注2:根据项目不同,其他阈值水平可能更合适,如电动汽车的刹车噪声评估。在这种情况下,与测试请求者和测试机构进行确认。 4.4.2设置风道出口距转子外径300 ~ 400mm,风道液压直径为200 ~ 300mm,调节风道出口测得的冷却空气为10m /s (35km /h);如有需要,从第4.4.1项调整至背景噪音水平。 注1:如果无法达到上述条件,请使用测试请求者进行定义,并将其记录在最终的测试报告中 注2:另外,调整冷却气流之间的1 000到2 000 m³/ h同时确保每4.4.1的背景噪音水平 注3:由于冷却空气装置是惯性测功器的一个关键子系统,它影响测试的可变性和测试的持续时间,因此确保为测试项目定义了正确的定义和测试条件。测量气流,评估特定温度下的冷却速率和测试速度,检查循环时间,观察测试期间的整体温度状态,以更好地了解环境和对噪音和摩擦行为的影响。
4.4.3选配-环境控制系统。除25°C以下的冷模块外,控制制动冷却空气温度为25°C±5°C,相对湿度为50% RH±10% RH -相当于7.90 ~ 11.93 g/kg,或在海平面和25°C的绝对湿度为24 ~ 13.86 g/m3。使用干湿测量图找出可接受的空气温度和相对湿度组合。在冷模组露点以下的环境控制系统,只控制冷却空气的温度。请参阅图1,了解盘式制动器总成的两种典型的冷却空气设置。文件上的测试报告,实际冷却空气的方向相对于制动和制动旋转。 注1:建议在冷区将冷却空气温度设置在IBT以下约10℃ 注2:为了保持类似的和一致的刹车装置的冷却行为(包括噪声绝缘体或垫片)同样的项目,除了保持冷却空气的设置相同,使用相同的夹具定位(左或右)在协议测试请求者和测试设备 |
4.5 Automatic data collection system capable of recording digitally the following channels at 50 Hz minimum: 4.5.1 Brake equivalent linear speed / km/h 4.5.2 Brake input pressure / kPa 4.5.3 Brake output torque / N·m 4.5.4 Calculated brake apparent friction or effectiveness per items 3.1 and 3.2 4.5.5 (optional) Brake fluid displacement / mm3 |
4.5自动数据收集系统,可以数码方式记录下列最低50hz的频道: 4.5.1制动等效线速度/ km/h 4.5.2制动输入压力/ kPa 4.5.3制动输出扭矩/ N·m 4.5.4根据3.1和3.2条款计算的制动表观摩擦或效率4.5.5(可选)制动液排量/ mm3 |
4.6 Automatic data collection system capable of recording the following channels at 10 Hz minimum: 4.6.1 Brake rotor or drum temperature / °C 4.6.2 (optional) Brake pad or brake shoe temperature / °C 4.6.3 Cooling air temperature, relative humidity (or absolute humidity), and speed (or airflow) |
4.6自动数据收集系统,可在10赫兹以下的频率记录以下频道: 4.6.1制动转子或制动鼓温度/℃ 4.6.2(可选)刹车片或闸瓦温度/℃ 4.6.3冷却空气温度、相对湿度(或绝对湿度)、速度(或气流) |
5. TEST FIXTURE测试夹具
The test fixture is of significant influence on the test complexity, logistics associated with the test preparation and setup, and ultimately can influence the dominant frequencies observed during the test. The fixture level specified for a given project is the results of multiple decisions and shall remain the same for the same project or noise investigation. Table 1 indicates the hardware required for each fixture level. Unless otherwise specified by the test requestor, fixture L2 is the recommended level as default | 测试夹具对测试复杂性、与测试准备和设置相关的物流有重要影响,并最终影响测试期间观察到的主导频率。给定项目的治具等级是多个决策的结果,对于同一项目或噪音调查应保持相同。表1显示了每个夹具级别所需的硬件。除非测试请求者另行指定,否则fixture L2是推荐的默认级别 |
5.1 Build the test fixture using as much as feasible the actual vehicle suspension and axle components. The suspension components should be as complete as possible to the connection points with the vehicle structure. This includes all bushings, including those at the structural connection points. However, certain projects specify a fixture using the knuckle assembly only to mount the brake corner and to connect to the inertia dynamometer tailstock. Also, it may not always be possible to use the entire suspension corner. In such cases, use an undisturbed knuckle assembly to fabricate the test fixture. NOTE 1: In order to minimize frequency coalescence between the fixture and the brake assembly, when feasible, prefill the fixture frame with a noise-absorbing material like play sand or similar. NOTE 2: When requested, conduct Frequency Response Function (FRF) natural frequency, or mobility measurements on the main components (friction material, rotor or drum, caliper, caliper brackets, brake backing plate assembly for drum brakes, knuckle or axle-end, etc.) to characterize the natural frequencies of the test fixture and brake assembly combined. Conduct the FRF at multiple locations, directions, and with the brake pressure applied at the typical pressures expected during the test. This type of measurements requires special preparation and proper instructions in agreement with the test requestor. See SAE J2933 and SAE J2598 for reference and examples for brake pads and brake rotors. NOTE 3: In order to minimize test results variability, for the same project, use the same fixture level and fixture design. Ideally, when requiring multiple fixtures for the same project, use the same source for fixture fabrication. For L2 or L3 fixtures impose a preload to the corner assembly to replicate its normal (or specified) operating condition. This ensures proper alignment, compliance, and transmissibility within the assembly. The preferred method of loading is to use a single compliant tension element (or compression underneath the knuckle) acting vertically, but not restricting vibration in the vehicle longitudinal or lateral directions. Other methods to impose preloading include: a. A wheel-and-tire assembly riding on a roller of suitable size and geometry b. An external bearing assembly connected to the driveline rotating the brake rotor or drum - typically a constant velocity shaft c. Loading the assembly through a soft connector from underneath the knuckle or hub carrier When applying a preload with additional components (bearings or wheel-and-tire assemblies) verify with the test requestor the proper method to minimize background noise (like using tires with the treads machined) or special algorithms to compensate for any additional background noise during the data collection and data analysis. |
5.1尽可能多的使用实际车辆悬架和车轴部件搭建试验夹具。悬挂部件应尽可能完整地与车辆结构的连接点连接。这包括所有衬套,包括结构连接点上的衬套。然而,某些项目指定夹具使用指关节总成只安装刹车角和连接到惯性测功器尾架。此外,它可能不总是可能使用整个悬挂角落。在这种情况下,使用不受干扰的转向节总成来制造测试夹具。 注1:为尽量减少夹具与制动总成之间的频率重合,在可行的情况下,应在夹具框架内预装吸音材料,如play sand或类似材料。 注2:根据要求,对主要部件(摩擦材料、转子或鼓、卡尺、卡尺支架、鼓式制动器衬板总成、转向节或轴端等)进行频响函数(FRF)固有频率或移动性测量,以表征测试夹具和制动器总成组合的固有频率。在多个位置、方向进行FRF,并在测试期间的典型压力下施加制动压力。这种类型的测量需要与测试请求者一致的特殊准备和适当的指示。参阅SAE J2933和SAE J2598,了解刹车片和刹车片转子的参考和示例。 注3:为了最小化测试结果的可变性,对于相同的项目,使用相同的夹具级别和夹具设计。理想情况下,当同一项目需要多个夹具时,应使用相同的夹具制造源。 对于L2或L3夹具施加一个预加载到角落大会复制其正常(或指定)的操作条件。这确保了正确的对准,顺从,和传播的大会。首选的加载方法是使用一个单一的顺从张力元件(或压缩下的指关节)垂直行动,但不限制振动的车辆纵向或横向方向。其他施加预压的方法包括:wheel-and-tire大会。骑在一个合适大小的辊和几何b。外部轴承装置连接到动力传动系统旋转刹车转子或鼓——通常一个恒定的速度加载大会通过软轴c。连接器在关节或中心载体应用预加载时附加组件(轴承或wheel-and-tire总成)验证与测试请求者适当的方法来减少背景噪音(如使用轮胎在数据收集和数据分析过程中补偿任何额外的背景噪声的特殊算法。 |
5.2 Specify for the project the method required to drive the brake corner (direct connection to the dynamometer shaft, spool-driver in combination with a constant velocity drive shaft, wheel center driver with constant velocity drive shaft, etc.) and the details regarding the driver material and design. See Figure 2. NOTE 1: The drive system and connection to the main dynamometer can significantly influence the noise propensity of a given brake and the dominant frequencies during the test. Document and use the same design and material for the same project as a best practice to reduce test-to-test and dyno-to-dyno variability. NOTE 2: When feasible or when indicated by the test requestor, the spool-driver design should mimic the interface and force distribution of a reference wheel design. 1. Constant velocity drive shaft 2. Spool-driver 3. Wheel center driver FIGURE 2 - BRAKE DRIVING SYSTEM (A) SPOOL DRIVER, (B) WHEEL CENTER DRIVER |
5.2具体说明本项目制动角的驱动方式(与测力计轴直接连接,spou -driver与恒速传动轴结合,轮毂驱动与恒速传动轴结合等)及驱动材料、设计等细节。参见图2。注1:在测试过程中,驱动系统和与主功率计的连接可以显著地影响给定制动器的噪声倾向性和主导频率。记录并使用相同的设计和材料,作为减少测试到测试和动态到动态变化的最佳实践。注2:在可行的情况下,或在测试要求者指出的情况下,假脱机驱动器的设计应模拟参考轮设计的界面和力分布。 1. 恒速传动轴 2. Spool-driver 3。图2 -制动驱动系统(A)轴驱动器,(B)车轮中心驱动器 |
5.3 Report the brake fixture level and the drive method used for a given test project (see EKB 3010). | 5.3报告给定测试项目的制动夹具水平和驱动方法(见EKB 3010)。 |
6. TEST INERTIA 测试惯性
Unless otherwise indicated by the test requestor, determine the test inertia per the default or the torque index methods on SAE J2789 with the vehicle loaded at GVWR at deceleration levels below 0.65 g. | 除非测试请求者另有指示,否则在SAE J2789上以低于0.65 g的减速水平在GVWR加载车辆时,根据默认或扭矩指数方法确定测试惯量。 |
7. PARTS PREPARATION AND TEST SETUP 零件准备和测试设置
7.1 Temperature measurement 7.1.1 Unless otherwise specified by the test requestor, use new rotor and brake pads, or new drum and brake shoe linings for each test. 7.1.2 For brake rotors, install thermocouple at a depth of 1.0 mm on the outboard face near the centerline of the braking surface. NOTE: As an alternative method for measuring rotor temperature, and in agreement with the test requestor, use an infrared measurement on the outside diameter of the inboard face of the disc. When using infrared measurements apply the outside diameter of the rotor coat with a heat-resistant black non-reflective paint that will provide an emissivity consistent with that required by the infrared measurement system. Obtain the correct emissivity settings from the test requestor or using an agreed-upon method. When using this method - unless readily available for the rotor design - perform a trial test to establish the correlation of the infrared reading with the embedded thermocouple. At appropriate intervals during testing ensure dust or debris does not accumulate on the lens. 7.1.3 Optional - For brake pads, install one thermocouple at a depth of 2.0 mm near the center of the friction surface on each pad. For disc brake pads with grooves, install the thermocouple at least 4.0 mm from the groove edge on the leading side of the pad. For inboard pads on single piston calipers, install the thermocouple on the leading side, 3 to 4 mm from the piston outside diameter near the center of the friction surface |
7.1温度测量 7.1.1除非试验要求另有规定,每次试验应使用新的转子和刹车片,或新的鼓和刹车片衬片。 7.1.2对于制动盘,在靠近制动面中心线的外侧面上安装深度为1.0 mm的热电偶。注:作为测量转子温度的另一种方法,在符合测试要求的情况下,对阀瓣内表面的外径进行红外测量。当使用红外测量时,在转子的外径上涂上一层耐热的黑色非反射漆,以提供与红外测量系统要求一致的发射率。从测试请求者或使用商定的方法获得正确的发射率设置。当使用这种方法时——除非转子设计中有现成的方法——进行试验,以建立红外读数与嵌入式热电偶的相关性。在测试期间适当的间隔确保灰尘或碎片不会积聚在镜头上。 7.1.3可选-对于刹车片,在每个刹车片摩擦面中心附近2.0 mm处安装一个热电偶。对于带有沟槽的盘式刹车片,将热电偶安装在距沟槽边缘至少4.0 mm的位置上。对于单活塞卡钳上的内板,将热电偶安装在前侧,离活塞外径3至4毫米,靠近摩擦面中心。 |
7.1.4 When conducting schedule C (including fade section), confirm with the test requestor the need and location for additional thermocouple on the backing plate or noise shim to monitor temperature 7.1.5 For brake drums, install thermocouple at a depth of 1.0 mm on the centerline of the braking surface. 7.1.6 Optional - For brake shoes, install a thermocouple at a depth of 1.0 mm near the center of the friction surface of the most heavily loaded shoe. 7.1.7 Use the same temperature measurement and location for the same project. 7.1.8 When using a different control thermocouple for the test, document and report on the final test report 7.1.9 The use of redundant temperature measurements can prevent accidental overheating due to thermocouple or wiring failure. |
7.1.4在进行附表C(包括褪色部分)时,应与试验请求人确认是否需要在垫板或噪声垫片上安装额外的热电偶以监视温度 7.1.5制动鼓应在制动面中心线安装深度为1.0 mm的热电偶。 7.1.6可选-对于闸瓦,在最沉重的闸瓦摩擦面中心附近安装深度为1.0 mm的热电偶。 7.1.7对同一项目使用相同的温度测量和位置。 7.1.8当使用不同的控制热电偶进行测试时,记录并报告最终的测试报告 7.1.9使用冗余的温度测量可以防止热电偶或线路故障引起的意外过热。 |
7.2 Microphone location 麦克风的位置
Position the microphone in the vertical plane and perpendicular to the brake axis and pointing downwards. Locate the center of the microphone (a) 100 mm outboard from the wheel hub mounting surface along the centerline of the axle, (b) 500 mm above the bake rotating axis, and (c) on the vertical plane of the rotor or drum axis. See Figure 3. | 将麦克风放置在垂直平面上,并垂直于制动轴,指向下方。将传声器(a)放置在距轮毂安装面100毫米外沿轮轴中心线的位置,(b)位于烘烤旋转轴上方500毫米处,(c)位于转子或鼓轴的垂直面上。参见图3。 |
7.3 Noise measurements settings 噪声测量设置
7.3.1 Unless otherwise specified by the test requestor, use a microphone conforming to IEC 61672-1 Class 2 or better with a corresponding windscreen. |
7.3.1除非试验请求人另有规定,否则应使用符合IEC 61672-1第2类或更好的麦克风,并配备相应的挡风玻璃。 |
7.3.2 Use a calibrator according to IEC 60942 of the same class of the microphone at 1 kHz, before and after the test. |
7.3.2试验前和试验后,根据同等级传声器IEC 60942的规定,使用1khz的校准器。 |
7.3.3 Use a frequency analyzer and/or digital data acquisition system to record the sound spectrum in the time domain. The system must compute and record narrowband sound pressure spectra using the following parameters and capabilities: 7.3.3.1 500 to 20 000 Hz frequency bandwidth, with a frequency resolution of 25 Hz 7.3.3.2 Peak-hold averaging with 66.7 % overlap processing 7.3.3.3 Apply Hanning windowing to the time-based records 7.3.3.4 Anti-aliasing filtering 7.3.3.5 A–type signal weighting |
7.3.3使用频率分析仪和/或数字数据采集系统记录时域内的声音频谱。该系统必须使用下列参数和能力计算和记录窄带声压谱: 7.3.3.1 500 ~ 20000 Hz的频率带宽,频率分辨率为25 Hz 7.3.3.2峰位保持平均,重叠处理66.7% 7.3.3.3对基于时间的记录应用汉宁窗口 7.3.3.4反锯齿过滤 7.3.3.5 a型信号加权 |
7.3.4 Measure the Sound Pressure Level (SPL) in dB(A) throughout the duration of each brake application for all sections. 7.3.5 Ensure the background noise level inside the test chamber with the cooling air system operating does not have peaks above 64 dB(A) above 900 Hz 7.3.6 Noise measurement duration (recording) is the same as the duration of the brake application for all sections; from t0 to t4 for dynamic and brake drag applications 7.3.7 Noise measurement period for analysis from t1 to t3 for dynamic and brake drag applications 7.3.8 Microphone information may be saved as peak hold spectra, time recordings, peak-hold history at fixed intervals, or peak dB(A) and corresponding frequency at fixed interval 7.3.9 Optional - Use accelerometers to validate noisy brake events. Define with the test requestor the quantity, location, and data validation technique prior to commence testing |
7.3.4在每段制动过程中,测量各区段的声压级(SPL),单位为dB(A)。 7.3.5保证运行冷却空气系统的试验室内的背景噪声水平的峰值不超过640db (A),不超过900hz 7.3.6噪声测量持续时间(记录)与各段制动时间相同;从t0到t4适用于动态和制动阻力应用 7.3.7动态和制动阻力应用t1至t3期间的噪声测量分析 7.3.8麦克风信息可保存为固定时间间隔的峰保持谱、时间记录、峰保持历史或固定时间间隔的峰值dB(A)和相应频率 7.3.9可选-使用加速计验证有噪声的刹车事件。在开始测试之前,与测试请求者一起定义数量、位置和数据验证技术 |
7.4 For disc brakes, the assembled lateral run-out shall not to exceed 50 µm when measured on the outboard surface and 10 mm from the outside diameter. |
7.4盘式制动器,组装侧摆不得超过50µm当测量外表面和外直径10毫米。 |
7.5 For drum brakes, set the diametric cage clearance to the value indicated by the test requestor, the vehicle service manual, or the brake assembly print. If no other information is available, set the diametric cage clearance to 0.6-0.8 mm, measured at the center of the shoes. Rotate to check for excessive drag and adjust if necessary. | 对于鼓式制动器,将直径保持架间隙设置为测试要求者、车辆维修手册或制动总成打印所指示的值。如果没有其他信息,将直径保持架间隙设置为0.6-0.8毫米,在鞋的中心测量。旋转检查是否有过度的阻力,必要时进行调整。 |
8. TEST CYCLES 测试周期
8.1 Dynamic Brake Application 动态制动应用
Figure 4 illustrates the main time-stamps used to characterize the brake application. FIGURE 4 - TYPICAL BRAKE APPLICATION TIME STAMPS To achieve the target pressure or deceleration level during dynamic braking cycles use a pressure ramp rate of 150 bar/s ± 50 bar/s. |
图4说明了用于描述制动应用程序的主要时间戳。 图4 -典型的制动应用时间戳 要达到目标压力或减速水平,在动态制动周期使用压力坡道率 150 bar/s±50 bar/s。 |
8.1.1 Time t0 Brake application initiation. At this time, the pressure starts to rise. 8.1.2 Time t1 Time at level reached. At this time, the brake reaches its target level for torque or pressure control. At time t1, the calculation of average by time and the average by distance begins. 8.1.3 Time t2 Time at the end of averages. At time t2 the inertia-dynamometer data acquisition system terminates the calculation of average by time and average by distance. Time t2 is the end of the stable portion of the brake application. t2 is defined as the time at which speed is 0.5 km/h above the release speed (t3). 8.1.4 Time t3 Time at release speed. At time t3, the inertia-dynamometer servo controller releases the brake (specified in 8.1.3). 8.1.5 Time t4 Time at brake pressure and torque lost. At time t4, pressure and torque are below the minimum thresholds. The inertiadynamometer considers the braking event complete. |
8.1.1 t0制动启动时间。这时,压力开始上升。 时间t1时间到达水平面。此时,制动器达到扭矩或压力控制的目标水平。t1时刻开始计算时间平均值和距离平均值。 8.1.3乘以t2时间,取平均值。在t2时刻,惯性测力计数据采集系统终止了按时间平均和按距离平均的计算。时间t2是制动稳定部分的结束时间。t2定义为释放速度(t3)以上0.5 km/h的时间。 8.1.4时间t3时间放行速度。在t3时刻,惯性测力计伺服控制器释放制动(8.1.3中规定)。 8.1.5倍t4时间制动压力和扭矩损失。在t4时刻,压力和扭矩低于最小阀值。惯性测量计认为制动事件已经完成。 |
8.2 Brake Drag Application for low-speed and backward/forward modules
制动阻力应用于低速和前进/后退模块
Figure 5 illustrates the main time-stamps used to characterize the brake drag application at constant brake speed. | 图5显示了在恒定制动速度下用于表征制动阻力的主要时间戳。 |
8.2.1 Time t0 Brake application initiation. At this time, the pressure starts to rise. The ramp rate from t0 to t1 should provide a rise time to the nominal pressure minus 2.5 bar of 0.5 s. 8.2.2 Time t1 Time at start of the 1 bar/s pressure profile - equal to 0.5 s. At time t1 brake pressure is equal to the nominal pressure minus 2.5 bar. At time t1, the calculation of average-by-time effectiveness begins. For the zero-bar pressure profile t1 equals 2.5 s. NOTE: 1 bar = 100 kPa = 0.1 MPa = 14.5 psi 8.2.3 Time t2 Time at the middle of the 1 bar/s profile - equal to 5.5 s. At time t2 brake pressure is equal to the nominal pressure plus 2.5 bar. For the zero-bar pressure profile t2 equals 5 s. 8.2.4 Time t3 Time at end of the 1 bar/s pressure profile - equal to 10.5 s. At time t3 brake pressure is again equal to the nominal pressure minus 2.5 bar. At time t3, the calculation of average-by-time effectiveness finishes. For the zero-bar pressure profile t3 equals 7.5 s. 8.2.5 Time t4 Time at brake pressure and torque lost - equal to 11 s. At time t4, pressure and torque are below the minimum thresholds. The inertia-dynamometer considers the braking event complete. For the zero-bar pressure profile t4 equals 10 s. The ramp rate from t3 to t4 should provide a pressure release time from the nominal pressure minus 2.5 bar down to zero of 0.5 s. |
8.2.1 t0制动启动时间。这时,压力开始上升。从t0到t1的斜坡速率应该提供0.5秒的公称压力- 2.5巴的上升时间。 时间t1时间在1巴/秒压力剖面开始-等于0.5秒。t1时刻的制动压力等于公称压力减去2.5巴。在时间t1,开始计算平均时间效率。对于零压剖面t1等于2.5 s。注:1bar = 100kpa = 0.1 MPa = 14.5 psi 8.2.3 t2在1 bar/s剖面中间的时间-等于5.5 s。t2时刻的制动压力等于公称压力加2.5 bar。对于零压剖面t2等于5s。 8.2.4时间在1bar /s压力剖面结束时的t3时间-等于10.5 s。在t3时刻,制动压力再次等于公称压力- 2.5 bar。在时间t3时,平均时间有效性的计算完成。对于零压剖面,t3等于7.5秒。 8.2.5时间t4时间制动压力和扭矩损失-等于11秒。在t4时刻,压力和扭矩低于最小阀值。惯性功率计认为制动事件已经完成。零杆压力剖面t4为10s。从t3到t4的斜坡速率应该提供从公称压力- 2.5 bar到零0.5 s的压力释放时间。 |
8.3 IBT control IBT控制
8.3.1 Brake warm-up operation for dynamic or brake drag applications If the temperature decreases below the IBT for the next braking condition, warm up the brake by conducting brake drag operation at 50 km/h until the brake temperature is 5 °C above the IBT for the next normal brake application. Control brake pressure at 20 bar for disc brakes, and at 30 bar for drum brakes. Do not conduct brake warm-up for sections with an IBT at or below 30 °C. NOTE: In cases when a brake warm-up is required for sections with an IBT at or below 30 °C (e.g.: when restarting the test after a test interruption), conduct brake warm-ups at 25 km/h and control brake pressure at 10 bar for disc brakes, and at 15 bar for drum brakes 8.3.2 Brake warm-up during the fade schedules If the IBT is not obtained (see item 8.4), perform a brake drag apply at 80 km/h with a torque equivalent to 1.96 m/s² deceleration to warm-up the brake. The warm-up procedure should be applied for no more than 20 s. Conducts the noise evaluation only during the stops where the initial temperature matches those indicated for the corresponding schedule. 8.3.3 Brake cool down If the brake temperature is 5 °C or above the IBT of the next brake application, rotate the brake at 20 km/h until the brake cools down to within 5 °C of the IBT. 8.3.4 Cold temperature soak When conducting schedule B, cool down the test chamber to 10 °C below the IBT before initiating the brake soak period; see item 4.4.3. |
如果下一制动工况的温度低于IBT,则通过以50km /h进行制动阻力操作来预热制动,直到下一正常制动工况的制动温度高于IBT 5℃为止。盘式制动器控制在20bar,鼓式制动器控制在30bar。对于IBT温度在30℃或以下的路段,不要进行刹车预热。制动热身时注意:在案例部分所需的IBT达到或者低于30°C(例如:当重新启动测试后测试中断),进行制动热身25 km / h和控制在10条盘式制动器制动压力,对鼓式制动器和15条 8.3.2制动热身期间消失时间表如果IBT不是获得(见8.4项),执行制动阻力在80 km / h扭矩相当于1.96 m / s²热身刹车减速。热身过程不应超过20秒。只在初始温度与相应进度表指示的温度相匹配的停站期间进行噪音评估。 如果下一个制动应用的制动温度为5°C或高于IBT,则以20公里/小时的速度旋转制动,直到制动冷却到IBT的5°C以内。 8.3.4冷浸温度当进行附录B时,在启动制动浸时间之前,将试验箱冷却到IBT温度以下10°C;4.4.3看到项。 |
8.4 Brake fade temperatures 制动失效温度
The brake fade section is intended to heat up the brake in preparation for the post-fade friction and noise evaluation. The IBTs for each brake application during the fade operation uses a logarithmic temperature profile per Eq. 4. 1 1 5 1 ln(15) ( ) ln( ) IBT IBT IBT n IBTn (Eq. 4) Where: n = brake application number; between 1 and 15 n IBT = Initial brake temperature for the nth brake application / °C 1 IBT = Initial brake temperature for the first brake application / °C 15 IBT = Initial brake temperature for the last brake application / °C The different fade schedules for disc or drum and front or rear brakes are shown on Table 2 and depicted in Figure 7. The optional fade schedules are more severe and provide higher temperatures. Unless otherwise specified by the test requestor, conduct the standard fade schedule and keep it the same for a given project. |
刹车减振部分是为了给刹车加热,为减振后的摩擦和噪声评估做准备。在渐退操作期间,每个制动应用的IBTs使用对数温度剖面,每个公式4。1 1 5 1 ln(15) ( ) ln( ) IBT IBT IBT n IBTn (Eq. Where: n =制动次数;1至15 n IBT =初始制动温度n制动/°C 1 IBT =第一制动初始制动温度/ 15°C IBT =初始制动温度在过去制动/°C盘的不同褪色时间表或鼓和前方或后方刹车是显示在表2和图7所示。可选的褪色时间表更严峻,并提供更高的温度。除非测试请求者另有规定,否则应执行标准的渐退计划,并对给定的项目保持相同的渐退计划。 |
9. TEST SEQUENCES NOMENCLATURE 测试序列命名法
Since actual testing projects assess brake squeal under multiple options (disc or drum, standard or optional fade temperatures, and other minimum temperatures during the cold module) it is important to clearly identify the actual test sequence requested (or conducted) when specifying (or comparing) test results. Use the following nomenclature to identify the test performed. See items 10.3 for disc brakes and item 11.3 for drum brakes. | 由于实际测试项目评估多种选项下的刹车噪声(阀瓣或鼓、标准或可选的渐变色温度,以及冷模块期间的其他最低温度),因此在指定(或比较)测试结果时,务必清楚地标识请求(或执行)的实际测试序列。使用以下术语来识别所执行的测试。盘式制动器见项目10.3,鼓式制动器见项目11.3。 |
Brake-axle-schedules(cold temperature)(fade temperature) Where: brake: disc or drum axle: front (FA) or rear (RA) schedules: schedules A, B, or C and the sequence actually requested or conducted (cold temperature): lowest initial brake temperature set-point during the cold module (fade temperature): maximum initial brake temperature during the fade module; see Table 2 | Brake-axle-schedules(冷温度)(消失温度)地点:制动:阀瓣或鼓轴:前方(FA)或后方(RA)时间表:安排A, B, C和序列实际上要求或进行温度(冷):最低初始制动温度设定点在寒冷的模块(消失温度):最大初始制动温度在褪色模块;见表2 |
There are three schedules within each test matrix, which can be combined in different modes and with different temperatures during the cold and the fade modules. Unless indicated by the test requestor, do not conduct schedules B or C as they are optional sections - denoted by an (*) on Tables 5 and 8. EXAMPLE: disc-FA-ABC(0)(450) means: test conducted on a disc brake, front axle, all modules included (A, B, and C), cold module conducted at zero degrees centigrade (0 °C), and fade module conducted with a maximum IBT of 450 °C. | 在每个测试矩阵中有三个时间表,它们可以在不同的模式下组合,在冷态和渐变色模块中有不同的温度。除非测试请求者指出,否则不要执行附录B或C,因为它们是可选部分——表5和表8上用(*)表示。例:disc- fa - abc(0)(450)表示:对盘式制动器、前轴、包括的所有模块(a、B、C)、在零摄氏度(0°C)下进行的冷模块、在最大IBT为450°C下进行的褪色模块进行的测试。 |
9.1 Before conducting schedule B confirm with the test requestor the lowest temperature and the temperature steps. Confirm with the test requestor any additional temperature steps or modifications to the standard temperatures. 9.2 Before conducting schedule C confirm with the test requestor the fade schedule per item 8.4. |
9.1在实施附录B之前,与测试请求者确认最低温度和温度步骤。与测试请求者确认任何额外的温度步骤或对标准温度的修改。 9.2在实施计划C之前,与测试请求者确认每项8.4的褪色计划。 |
10. DISC BRAKE TEST PARAMETERS AND TEST MATRIX
盘式制动器试验参数及试验矩阵
10.1 Summary for disc brake test matrix 盘式制动器试验矩阵总结
Table 3 indicates the number of brake applications with noise analysis for each option and the corresponding cumulative brake applications for disc brake tests (front or rear; standard or optional sections; schedules A, B, C, or combinations). The nomenclature to indicate the sections and the temperatures selected for the test is indicated on the second row: |
表3列出了每个选项的制动应用数量和相应的盘式制动器试验的累积制动应用数量(前制动器或后制动器;标准或可选部分;附表A、B、C或组合)。用于指示切片和为测试选择的温度的命名法在第二行: |
10.2 Pressure profiles and constant pressure sequences for disc brakes
盘式制动器的压力分布和恒压序列
Different modules use different sequences to combine pressure profiles, braking/drag speeds, and initial brake temperatures to build the entire test matrix. Figures 8 to 13 illustrate the pressure and speeds for each type of module during the disc brake test matrix. The actual sequence on Table 5 indicates the initial brake temperature for all brake events during a particular cycle. The corresponding braking or drag speed is shown between () for each brake event. Apply the test sequences at each temperature step during the applicable cycle before moving on to the next temperature step. | 不同的模块使用不同的序列来组合压力分布、制动/拖动速度和初始制动温度来构建整个测试矩阵。图8至13显示了盘式制动器测试矩阵中每种模块的压力和速度。表5中的实际顺序显示了在一个特定周期内所有制动事件的初始制动温度。对于每个制动事件,在()之间显示相应的制动或拖动速度。在进行下一个温度步骤之前,在适用的周期内的每个温度步骤上应用测试序列。 |
10.3 Test matrix and parameters 测试矩阵及参数
The different sections within the disc test matrix combine different speed, temperature, and pressure steps to generate the total number of brake applications. Table 4 illustrates these combinations and the calculation to generate the number of brake applications per section. Drag applications use a pressure profile, while stops use a constant pressure levels. | 阀瓣测试矩阵中的不同部分结合不同的速度、温度和压力步骤来生成刹车应用程序的总数。表4说明了这些组合和产生每个区段的制动应用数量的计算。拖动应用程序使用压力配置文件,而停止使用恒压级别。 |
11. DRUM BRAKE TEST PARAMETERS AND TEST MATRIX
鼓式制动器试验参数及试验矩阵
11.1 Summary for drum brake test matrix 鼓式制动器试验矩阵汇总
Similar to item 10.1, Table 6 indicates the number of brake applications with noise analysis for each option and the corresponding cumulative brake applications for drum brake tests (front or rear; standard or optional sections; schedules A, B, C, or combinations). The nomenclature to indicate the sections and the temperatures selected for the test is indicated on the second row: | 与第10.1项相似,表6给出了每个选项的制动应用数量,以及鼓式制动器试验中相应的累积制动应用数量(前制动或后制动;标准或可选部分;附表A、B、C或组合)。用于指示切片和为测试选择的温度的命名法在第二行: |
11.2 Pressure profiles and constant pressure sequences for drum brakes
鼓式制动器的压力分布和恒压序列
Similar to item 10.2, Figures 14 to 19 illustrate the different combination of test speeds and pressure levels for each type of brake application. | 与第10.2项相似,图14至图19显示了不同类型刹车应用的测试速度和压力水平的不同组合。 |
11.3 Test matrix and parameters
测试矩阵及参数
The different sections within the drum test matrix combine different speed, temperature, and pressure steps to generate the total number of brake applications. Table 7 illustrates these combinations and the calculation to generate the number of brake applications per section. Drag applications use a pressure profile, while stops use a constant pressure levels. | 鼓测试矩阵中的不同部分结合了不同的速度、温度和压力步骤来生成刹车应用程序的总数。表7说明了这些组合和产生每个区段的制动应用数量的计算。拖动应用程序使用压力配置文件,而停止使用恒压级别。 |
12. NOISY BRAKE APPLICATIONS 嘈杂的制动应用程序
Unless specified by the test requestor, use the following definitions for a noisy brake event (see VDA 303) 1 | 除非由测试请求者指定,否则对有噪声的制动事件使用下列定义(参见VDA 303) 1 |
12.1 Frequency ranges to report noisy brake applications:
频率范围报告有噪声的刹车应用:
12.1.1 Lower limit of 2 kHz when utilizing a knuckle fixture (L1); or 1.25 kHz when utilizing a full suspension corner (L2), or full axle (L3) fixtures; 12.1.2 Upper limit of 16 kHz |
12.1.1使用转向节夹具(L1)时,2khz的下限;或使用全悬架转角(L2)或全轴(L3)装置时为1.25 kHz; 12.1.2 16 kHz的上限 |
12.2 At least one peak equal to or greater 至少有一个峰值等于或大于
At least one peak equal to or greater than 70 dB(A) within the frequency range, separate from the closest peak by at least 150 Hz (or 2.5% of the peak frequency), and 6 dB(A) above the mean noise level measure for the range of ± 75 Hz (or ±1.25% of the frequency) above and below the peak level | 至少有一个峰值大于或等于70分贝(A)在频率范围内,独立于最接近峰值至少150赫兹(或2.5%的峰值频率),和6 dB (A)高于平均噪声水平测量范围的±75赫兹(或±1.25%的频率)上方和下方的峰值水平 |
NOTE 1: the actual test report will include separate charts for the maximum peak and the three loudest peaks for all brake applications with sound pressure level equal to or greater than 70 dB(A) NOTE 2: as only squeal noise is considered as part of the evaluation, the treatment of other types of noise that might occur during the test needs discussion and decision from the test requestor, prior to testing and generating the corresponding test report |
注1:实际测试报告将包括所有制动应用中声压级等于或大于70db (A)的最大峰值和三个最大峰值的单独图表 注2:由于只将噪声作为评估的一部分,因此在测试过程中可能出现的其他类型的噪声的处理需要测试请求者在测试和生成相应的测试报告之前进行讨论和决策 |
13. SUMMARY OF TEST RESULTS 测试结果摘要
In order to present test results in a systematic manner, combine charts and tabular results as the default and minimum test report structure and layout (see Appendix A). | 为了系统地展示测试结果,将图表和表格结果合并为默认的和最小的测试报告结构和布局(见附录a)。 |
13.1 Use charts to provide graphical depiction of the different noisy brake events per item 12 in relationship with (or as a function of) brake temperature, pressure, speed, test history, and frequency. 13.2 Summary table of noisy brake events per item 12 and occurrence for different types of brake applications for each frequency range. See example in Table 9. 13.3 Optional - Digital pictures showing the cooling air setup, fixture design, and driving method. 13.4 Optional - Digital pictures showing the friction material, the brake rotor or drum, and the noise insulator (when applicable) at the end of the test. |
13.1使用图表来提供每项12中不同的噪声制动事件与(或作为)制动温度、压力、速度、试验历史和频率的关系的图形化描述。 13.2在每个频率范围内,对于不同类型的刹车应用,每项12所对应的有噪声的刹车事件和发生情况的汇总表。参见表9中的示例。 13.3可选-显示冷却空气设置、夹具设计和驱动方式的数字图片。 13.4可选-试验结束时显示摩擦材料、制动转子或制动鼓、隔音材料(如适用)的数字图片。 |
14. TEST INPUT PARAMETERS AND SETUP PER EKB 3010
根据EKB 3010测试输入参数和设置
In order to develop robust testing practices, the EKB (European Working Group for Brake NVH) has developed a comprehensive definition of test parameters for the test. The ability to better document (1) project, (2) general brake setup, (3) measurement setup, (4) test setup and dynamometer conditions, (5) suspension or full-axle fixture (L2 or L3) description, (6) knuckle fixture (L1) description, (7) caliper parameters, (8) rotor parameters, and (9) brake pad parameters provides the opportunity to conduct tests at different facilities or using different dynamometers under repeatability and reproducibility conditions. In addition, allows a simpler and more reliable comparison among different test results. See Appendix B. | 为了制定稳健的测试实践,EKB(欧洲NVH制动工作组)已经制定了一个全面的测试参数定义。能够更好的项目文档(1),(2)一般制动设置,(3)测量设置,(4)测试设置和测功器条件,(5)暂停或full-axle夹具(L2和L3)描述,(6)关节固定(L1)描述,(7)厚度参数,转子参数,(8)和(9)刹车片参数提供机会在不同的设备进行测试或使用不同的重复性和再现性条件下测。此外,允许在不同的测试结果之间进行更简单和更可靠的比较。请参阅附录B。 |
15. NOTES 笔记
15.1 Marginal Indicia 边缘标记
A change bar (l) located in the left margin is for the convenience of the user in locating areas where technical revisions, not editorial changes, have been made to the previous issue of this document. An (R) symbol to the left of the document title indicates a complete revision of the document, including technical revisions. Change bars and (R) are not used in original publications, nor in documents that contain editorial changes only. | 位于左边空白处的更改栏(l)是为了方便用户查找对上一期文档进行了技术修订而不是编辑更改的区域。文件标题左边的(R)符号表示文件的完整修订,包括技术修订。更改条和(R)不用于原始出版物,也不用于仅包含编辑更改的文档。 |