InnoDB索引允许NULL对性能有影响吗(1)

简介: InnoDB索引允许NULL对性能有影响吗

阅读目录

0. 初始化测试表、数据1. 问题1:索引列允许为NULL,对性能影响有多少 结论1,存储大量的NULL值,除了计算更复杂之外,数据扫描的代价也会更高一些2. 问题2:辅助索引需要MVCC多版本读的时候,为什么需要依赖聚集索引 结论2,辅助索引中不存储DB_TRX_ID,需要依托聚集索引实现MVCC3. 问题3:为什么查找数据时,一定要读取叶子节点,只读非叶子节点不行吗 结论3,在索引树中查找数据时,最终一定是要读取叶子节点才行4. 问题4:索引列允许为NULL,会额外存储更多字节吗 结论4,定义列值允许为NULL并不会增加物理存储代价,但对索引效率的影响要另外考虑5. 几点总结6. 延伸阅读

本文开始之前,有几篇文章建议先复习一下

接下来,我们一起测试验证关于辅助索引的几个特点。

0. 初始化测试表、数据

测试表结构如下:

[root@yejr.run]> CREATE TABLE `t_sk` (
  `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
  `c1` int(10) unsigned NOT NULL,
  `c2` int(10) unsigned NOT NULL,
  `c3` int(10) unsigned NOT NULL,
  `c4` int(10) unsigned NOT NULL,
  `c5` datetime NOT NULL,
  `c6` char(20) NOT NULL,
  `c7` varchar(30) NOT NULL,
  `c8` varchar(30) NOT NULL,
  `c9` varchar(30) NOT NULL,
  PRIMARY KEY (`id`),
  KEY `k1` (`c1`)
) ENGINE=InnoDB;

除了主键索引外,还有个 c1 列上的辅助索引。

mysql_random_data_load 灌入50万测试数据。

1. 问题1:索引列允许为NULL,对性能影响有多少



把辅助索引列 c1 修改为允许NULL,并且随机更新5万条数据,将 c1 列设置为NULL

[root@yejr.run]> alter table t_sk modify c1 int unsigned;


[root@yejr.run]> update t_sk set c1 = NULL order by rand() limit 50000;
Query OK, 50000 rows affected (2.83 sec)
Rows matched: 50000 Changed: 50000 Warnings: 0

#随机1/10为null
[root@yejr.run]> select count(*) from t_sk where c1 is null;
+----------+
| count(*) |
+----------+
| 50000 |
+----------+



好,现在观察辅助索引的索引数据页结构。

[root@yejr.run]# innblock test/t_sk.ibd scan 16
...
Datafile Total Size:100663296
===INDEX_ID:46 --聚集索引(主键索引)
level2 total block is (1) --根节点,层高2(共3层),共1个page
block_no: 3,level: 2|*|
level1 total block is (5) --中间节点,层高1,共5个page
block_no: 261,level: 1||block_no: 262,level: 1||block_no: 263,level: 1|*|
block_no: 264,level: 1||block_no: 265,level: 1||
level0 total block is (5020) --叶子节点,层高0,共5020个page
block_no: 5,level: 0||block_no: 6,level: 0||block_no: 7,level: 0|*|
...
===INDEX_ID:47 --辅助索引
level1 total block is (1) --根节点,层高1(共2层),共1个page
block_no: 4,level: 1|*|
level0 total block is (509) --叶子节点,层高0,共509个page
block_no: 18,level: 0||block_no: 19,level: 0||block_no: 31,level: 0|*|
...



观察辅助索引的根节点里的数据

[root@yejr.run]# innodb_space -s ibdata1 -T test/t_sk -p 4 page-dump
...
records:
{:format=>:compact,
:offset=>126, --第一条记录
:header=>
{:next=>428,
:type=>:node_pointer,
:heap_number=>2,
:n_owned=>0,
:min_rec=>true, --min_rec表示最小记录
:deleted=>false,
:nulls=>["c1"],
:lengths=>{},
:externs=>[],
:length=>6},
:next=>428,
:type=>:secondary,
:key=>[{:name=>"c1", :type=>"INT UNSIGNED", :value=>:NULL}], --对应c1列值为NULL
:row=>[{:name=>"id", :type=>"INT UNSIGNED", :value=>9}], --对应id=9
:sys=>[],
:child_page_number=>18, --指向叶子节点 pageno = 18
:length=>8}
...
{:format=>:compact,
:offset=>6246, --最后一条记录(next=>112,指向supremum)
:header=>
{:next=>112,
:type=>:node_pointer,
:heap_number=>346,
:n_owned=>0,
:min_rec=>false,
:deleted=>false,
:nulls=>[],
:lengths=>{},
:externs=>[],
:length=>6},
:next=>112,
:type=>:secondary,
:key=>[{:name=>"c1", :type=>"INT UNSIGNED", :value=>2142714688}], --对应c1=2142714688
:row=>[{:name=>"id", :type=>"INT UNSIGNED", :value=>73652}], --对应id=73652
:sys=>[],
:child_page_number=>2935, --指向叶子节点2935
:length=>12}



经过统计,根节点中c1列值为NULL的记录共有33条,其余476条是c1列值为非NULL,共509条记录。

叶子节点中,每个page大约可以存储1547条记录,共有5万条记录值为NULL,因此需要至少33个page来保存(ceiling(50000/1547) = 33)。

看下这个SQL的查询计划

[root@yejr.run]> desc select count(*) from t_sk where c1 is null\G
1. row **
id: 1
select_type: SIMPLE
table: t_sk
partitions: NULL
type: ref
possible_keys: k1
key: k1
key_len: 5
ref: const
rows: 99112
filtered: 100.00
Extra: Using where; Using index



从上面的输出中,我们能看到,当索引列设置允许为NULL时,是会对其纳入索引统计信息,并且值为NULL的记录,都是存储在索引树的最左边。

接下来,跑几个SQL查询。



SQL1,统计所有NULL值数量

[root@yejr.run]> select count(*) from t_sk where c1 is null;
+----------+
| count(*) |
+----------+
| 50000 |
+----------+



查看slow log

InnoDB_pages_distinct: 34
...
select count(*) from t_sk where c1 is null;

共需要扫描34个page,根节点(1)+叶子节点(33),正好34个page。

备注:需要用Percona版本才能在slow query log中有InnoDB_pages_distinct信息。



SQL2, 查询 c1 is null

[root@yejr.run]> select id,c1 from t_sk where c1 is null limit 1;
+------+------+
| id | c1 |
+------+------+
| 9607 | NULL |
+------+------+

查看slow log

InnoDB_pages_distinct: 12
...
select id,c1 from t_sk where c1 is null limit 1;




            </div>
相关文章
|
Apache
java.lang.NoClassDefFoundError: org/apache/commons/io/output/UnsynchronizedByteArrayOutputStream
java.lang.NoClassDefFoundError: org/apache/commons/io/output/UnsynchronizedByteArrayOutputStream
1377 0
|
10月前
|
人工智能 搜索推荐 Serverless
AI 剧本生成与动画创作方案评测
《AI剧本生成与动画创作》解决方案评测:该方案利用阿里云技术,实现从剧本撰写到视频合成的一站式自动化流程,部署文档指引准确,逻辑清晰。内容创作上显著简化流程、降低门槛,适合短视频创作者等用户,但部分术语较晦涩,特定风格的动画创作个性化不足。建议增加模板和教程,优化服务初始化流程,进一步提升用户体验。
327 15
|
10月前
|
人工智能 Java
产品经理-面试问题(高频率)
本文全面介绍初入产品岗位的基本面试问题,涵盖离职原因、技术沟通、薪资期望、到岗时间、个人优劣势及竞品调研分析等内容。针对每个问题提供详细回答示例,帮助求职者更好地准备面试,提升应答技巧和自信心。内容涉及职业成长、公司文化匹配、工作与生活平衡等多方面考量,助力求职者找到理想职位。
|
存储 人工智能 算法
AI伦理学:建立可信的智能系统框架
【9月更文挑战第26天】随着AI技术的迅猛发展,其在各领域的应用日益广泛,但也带来了算法偏见、数据隐私泄露、就业替代等伦理和法律挑战。本文探讨AI伦理学的核心议题,包括数据隐私保护、算法公平性与透明度、机器决策责任归属及对就业市场的影响,并提出建立可信智能系统框架的建议,如强化法律法规、技术创新、建立监督机制、行业自律和公众教育,以确保AI技术的可持续发展和社会接受。
|
运维 Kubernetes Devops
平台工程:它是什么?谁来做?怎么做?
大家可能听说过平台工程,这是一个新术语,它为开发和 DevOps 领域中本已拥挤的角色集合增添了新内容。 在这篇文章中,我们将介绍平台工程、它与 DevOps 的区别以及为什么你可能考虑采用平台工程以及谁需要拥有平台工程的能力。
|
安全 Nacos 数据安全/隐私保护
【技术干货】破解Nacos安全隐患:连接用户名与密码明文传输!掌握HTTPS、JWT与OAuth2.0加密秘籍,打造坚不可摧的微服务注册与配置中心!从原理到实践,全方位解析如何构建安全防护体系,让您从此告别数据泄露风险!
【8月更文挑战第15天】Nacos是一款广受好评的微服务注册与配置中心,但其连接用户名和密码的明文传输成为安全隐患。本文探讨加密策略提升安全性。首先介绍明文传输风险,随后对比三种加密方案:HTTPS简化数据保护;JWT令牌减少凭证传输,适配分布式环境;OAuth2.0增强安全,支持多授权模式。每种方案各有千秋,开发者需根据具体需求选择最佳实践,确保服务安全稳定运行。
1370 0
|
数据采集 Java Python
python并发编程:Python在FastAPI服务中使用多进程池加速程序运行
python并发编程:Python在FastAPI服务中使用多进程池加速程序运行
2153 0
|
负载均衡 网络协议 关系型数据库
rhel 8.7 部署 keepalived+haproxy 实现 mysql 双主高可用场景 2
rhel 8.7 部署 keepalived+haproxy 实现 mysql 双主高可用场景
353 2
|
存储 传感器 数据挖掘
请解释一下时序数据库的工作原理,并提供一个使用时序数据库的实际应用场景。
请解释一下时序数据库的工作原理,并提供一个使用时序数据库的实际应用场景。
580 0
|
Kubernetes Linux Docker
Kubeadm 快速搭建 k8s v1.24.1 集群(openEuler 22.03 LTS)
kubeadm 是 Kubernetes 官方提供的用于快速安部署 Kubernetes 集群的工具,伴随 Kubernetes 每个版本的发布都会同步更新,kubeadm 会对集群配置方面的一些实践做调整,通过实验 kubeadm 可以学习到 Kubernetes 官方在集群配置上一些新的最佳实践...
2869 3
Kubeadm 快速搭建 k8s v1.24.1 集群(openEuler 22.03 LTS)