手把手教你在netty中使用TCP协议请求DNS服务器

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: DNS的全称domain name system,既然是一个系统就有客户端和服务器之分。一般情况来说我们并不需要感知这个DNS客户端的存在,因为我们在浏览器访问某个域名的时候,浏览器作为客户端已经实现了这个工作。但是有时候我们没有使用浏览器,比如在netty环境中,如何构建一个DNS请求呢?

简介

DNS的全称domain name system,既然是一个系统就有客户端和服务器之分。一般情况来说我们并不需要感知这个DNS客户端的存在,因为我们在浏览器访问某个域名的时候,浏览器作为客户端已经实现了这个工作。

但是有时候我们没有使用浏览器,比如在netty环境中,如何构建一个DNS请求呢?

DNS传输协议简介

在RFC的规范中,DNS传输协议有很多种,如下所示:

  • DNS-over-UDP/53简称”Do53″,是使用UDP进行DNS查询传输的协议。
  • DNS-over-TCP/53简称”Do53/TCP”,是使用TCP进行DNS查询传输的协议。
  • DNSCrypt,对DNS传输协议进行加密的方法。
  • DNS-over-TLS简称”DoT”,使用TLS进行DNS协议传输。
  • DNS-over-HTTPS简称”DoH”,使用HTTPS进行DNS协议传输。
  • DNS-over-TOR,使用VPN或者tunnels连接DNS。

这些协议都有对应的实现方式,我们先来看下Do53/TCP,也就是使用TCP进行DNS协议传输。

DNS的IP地址

先来考虑一下如何在netty中使用Do53/TCP协议,进行DNS查询。

因为DNS是客户端和服务器的模式,我们需要做的是构建一个DNS客户端,向已知的DNS服务器端进行查询。

已知的DNS服务器地址有哪些呢?

除了13个root DNS IP地址以外,还出现了很多免费的公共DNS服务器地址,比如我们常用的阿里DNS,同时提供了IPv4/IPv6 DNS和DoT/DoH服务。

IPv4: 
223.5.5.5
223.6.6.6
IPv6: 
2400:3200::1
2400:3200:baba::1
DoH 地址: 
https://dns.alidns.com/dns-query
DoT 地址: 
dns.alidns.com

再比如百度DNS,提供了一组IPv4和IPv6的地址:

IPv4: 
180.76.76.76
IPv6: 
2400:da00::6666

还有114DNS:

114.114.114.114
114.114.115.115

当然还有很多其他的公共免费DNS,这里我选择使用阿里的IPv4:223.5.5.5为例。

有了IP地址,我们还需要指定netty的连接端口号,这里默认的是53。

然后就是我们要查询的域名了,这里以www.flydean.com为例。

你也可以使用你系统中配置的DNS解析地址,以mac为例,可以通过nslookup进行查看本地的DNS地址:

nslookup  www.flydean.com
Server:     8.8.8.8
Address:    8.8.8.8#53
Non-authoritative answer:
www.flydean.com canonical name = flydean.com.
Name:   flydean.com
Address: 47.107.98.187

Do53/TCP在netty中的使用

有了DNS Server的IP地址,接下来我们需要做的就是搭建netty client,然后向DNS server端发送DNS查询消息。

搭建DNS netty client

因为我们进行的是TCP连接,所以可以借助于netty中的NIO操作来实现,也就是说我们需要使用NioEventLoopGroup和NioSocketChannel来搭建netty客户端:

final String dnsServer = "223.5.5.5";
        final int dnsPort = 53;
EventLoopGroup group = new NioEventLoopGroup();
            Bootstrap b = new Bootstrap();
            b.group(group)
                    .channel(NioSocketChannel.class)
                    .handler(new Do53ChannelInitializer());
            final Channel ch = b.connect(dnsServer, dnsPort).sync().channel();

netty中的NIO Socket底层使用的就是TCP协议,所以我们只需要像常用的netty客户端服务一样构建客户端即可。

然后调用Bootstrap的connect方法连接到DNS服务器,就建立好了channel连接。

这里我们在handler中传入了自定义的Do53ChannelInitializer,我们知道handler的作用是对消息进行编码、解码和对消息进行读取。因为目前我们并不知道客户端查询的消息格式,所以Do53ChannelInitializer的实现我们在后面再进行详细讲解。

发送DNS查询消息

netty提供了DNS消息的封装,所有的DNS消息,包括查询和响应都是DnsMessage的子类。

每个DnsMessage都有一个唯一标记的ID,还有代表这个message类型的DnsOpCode。

对于DNS来说,opCode有下面这几种:

public static final DnsOpCode QUERY = new DnsOpCode(0, "QUERY");
    public static final DnsOpCode IQUERY = new DnsOpCode(1, "IQUERY");
    public static final DnsOpCode STATUS = new DnsOpCode(2, "STATUS");
    public static final DnsOpCode NOTIFY = new DnsOpCode(4, "NOTIFY");
    public static final DnsOpCode UPDATE = new DnsOpCode(5, "UPDATE");

因为每个DnsMessage都可能包含4个sections,每个section都以DnsSection来表示。因为有4个section,所以在DnsSection定义了4个section类型:

QUESTION,
    ANSWER,
    AUTHORITY,
    ADDITIONAL;

每个section里面又包含了多个DnsRecord, DnsRecord代表的就是Resource record,简称为RR,RR中有一个CLASS字段,下面是DnsRecord中CLASS字段的定义:

int CLASS_IN = 1;
    int CLASS_CSNET = 2;
    int CLASS_CHAOS = 3;
    int CLASS_HESIOD = 4;
    int CLASS_NONE = 254;
    int CLASS_ANY = 255;

DnsMessage是DNS消息的统一表示,对于查询来说,netty中提供了一个专门的查询类叫做DefaultDnsQuery。

先来看下DefaultDnsQuery的定义和构造函数:

public class DefaultDnsQuery extends AbstractDnsMessage implements DnsQuery {
        public DefaultDnsQuery(int id) {
        super(id);
    }
    public DefaultDnsQuery(int id, DnsOpCode opCode) {
        super(id, opCode);
    }

DefaultDnsQuery的构造函数需要传入id和opCode。

我们可以这样定义一个DNS查询:

int randomID = (int) (System.currentTimeMillis() / 1000);
            DnsQuery query = new DefaultDnsQuery(randomID, DnsOpCode.QUERY)

既然是QEURY,那么还需要设置4个sections中的查询section:

query.setRecord(DnsSection.QUESTION, new DefaultDnsQuestion(queryDomain, DnsRecordType.A));

这里调用的是setRecord方法向section中插入RR数据。

这里的RR数据使用的是DefaultDnsQuestion。DefaultDnsQuestion的构造函数有两个,一个是要查询的domain name,这里就是”www.flydean.com”,另外一个参数是dns记录的类型。

dns记录的类型有很多种,在netty中有一个专门的类DnsRecordType表示,DnsRecordType中定义了很多个类型,如下所示:

public class DnsRecordType implements Comparable<DnsRecordType> {
    public static final DnsRecordType A = new DnsRecordType(1, "A");
    public static final DnsRecordType NS = new DnsRecordType(2, "NS");
    public static final DnsRecordType CNAME = new DnsRecordType(5, "CNAME");
    public static final DnsRecordType SOA = new DnsRecordType(6, "SOA");
    public static final DnsRecordType PTR = new DnsRecordType(12, "PTR");
    public static final DnsRecordType MX = new DnsRecordType(15, "MX");
    public static final DnsRecordType TXT = new DnsRecordType(16, "TXT");
    ...

因为类型比较多,我们挑选几个常用的进行讲解。

  • A类型,是address的缩写,用来指定主机名或者域名对应的ip地址.
  • NS类型,是name server的缩写,是域名服务器记录,用来指定域名由哪个DNS服务器来进行解析。
  • MX类型,是mail exchanger的缩写,是一个邮件交换记录,用来根据邮箱的后缀来定位邮件服务器。
  • CNAME类型,是canonical name的缩写,可以将多个名字映射到同一个主机.
  • TXT类型,用来表示主机或者域名的说明信息。

以上几个是我们经常会用到的dns record类型。

这里我们选择使用A,用来查询域名对应的主机IP地址。

构建好query之后,我们就可以使用netty client发送query指令到dns服务器了,具体的代码如下:

DnsQuery query = new DefaultDnsQuery(randomID, DnsOpCode.QUERY)
                    .setRecord(DnsSection.QUESTION, new DefaultDnsQuestion(queryDomain, DnsRecordType.A));
            ch.writeAndFlush(query).sync();

DNS查询的消息处理

DNS的查询消息我们已经发送出去了,接下来就是对消息的处理和解析了。

还记得我们自定义的Do53ChannelInitializer吗?看一下它的实现:

class Do53ChannelInitializer extends ChannelInitializer<SocketChannel> {
    @Override
    protected void initChannel(SocketChannel ch) {
        ChannelPipeline p = ch.pipeline();
        p.addLast(new TcpDnsQueryEncoder())
                .addLast(new TcpDnsResponseDecoder())
                .addLast(new Do53ChannelInboundHandler());
    }
}

我们向pipline中添加了两个netty自带的编码解码器TcpDnsQueryEncoder和TcpDnsResponseDecoder,还有一个自定义用来做消息解析的Do53ChannelInboundHandler。

因为我们向channel中写入的是DnsQuery,所以需要一个encoder将DnsQuery编码为ByteBuf,这里使用的是netty提供的TcpDnsQueryEncoder:

public final class TcpDnsQueryEncoder extends MessageToByteEncoder<DnsQuery>

TcpDnsQueryEncoder继承自MessageToByteEncoder,表示将DnsQuery编码为ByteBuf。

看下他的encode方法:

protected void encode(ChannelHandlerContext ctx, DnsQuery msg, ByteBuf out) throws Exception {
        out.writerIndex(out.writerIndex() + 2);
        this.encoder.encode(msg, out);
        out.setShort(0, out.readableBytes() - 2);
    }

可以看到TcpDnsQueryEncoder在msg编码之前存储了msg的长度信息,所以是一个基于长度的对象编码器。

这里的encoder是一个DnsQueryEncoder对象。

看一下它的encoder方法:

void encode(DnsQuery query, ByteBuf out) throws Exception {
        encodeHeader(query, out);
        this.encodeQuestions(query, out);
        this.encodeRecords(query, DnsSection.ADDITIONAL, out);
    }

DnsQueryEncoder会依次编码header、questions和records。

完成编码之后,我们还需要从DNS server的返回中decode出DnsResponse,这里使用的是netty自带的TcpDnsResponseDecoder:

public final class TcpDnsResponseDecoder extends LengthFieldBasedFrameDecoder

TcpDnsResponseDecoder继承自LengthFieldBasedFrameDecoder,表示数据是以字段长度来进行分割的,这和我们刚刚将的encoder的格式类似。

来看下他的decode方法:

protected Object decode(ChannelHandlerContext ctx, ByteBuf in) throws Exception {
        ByteBuf frame = (ByteBuf)super.decode(ctx, in);
        if (frame == null) {
            return null;
        } else {
            DnsResponse var4;
            try {
                var4 = this.responseDecoder.decode(ctx.channel().remoteAddress(), ctx.channel().localAddress(), frame.slice());
            } finally {
                frame.release();
            }
            return var4;
        }
    }

decode方法先调用LengthFieldBasedFrameDecoder的decode方法将要解码的内容提取出来,然后调用responseDecoder的decode方法,最终返回DnsResponse。

这里的responseDecoder是一个DnsResponseDecoder。具体decoder的细节这里就不过多阐述了。感兴趣的同学可以自行查阅代码文档。

最后,我们得到了DnsResponse对象。

接下来就是自定义的InboundHandler对消息进行解析了:

class Do53ChannelInboundHandler extends SimpleChannelInboundHandler<DefaultDnsResponse>

在它的channelRead0方法中,我们调用了readMsg方法对消息进行处理:

private static void readMsg(DefaultDnsResponse msg) {
        if (msg.count(DnsSection.QUESTION) > 0) {
            DnsQuestion question = msg.recordAt(DnsSection.QUESTION, 0);
            log.info("question is :{}",question);
        }
        int i = 0, count = msg.count(DnsSection.ANSWER);
        while (i < count) {
            DnsRecord record = msg.recordAt(DnsSection.ANSWER, i);
            //A记录用来指定主机名或者域名对应的IP地址
            if (record.type() == DnsRecordType.A) {
                DnsRawRecord raw = (DnsRawRecord) record;
                log.info("ip address is: {}",NetUtil.bytesToIpAddress(ByteBufUtil.getBytes(raw.content())));
            }
            i++;
        }
    }

DefaultDnsResponse是DnsResponse的一个实现,首先判断msg中的QUESTION个数是否大于零。

如果大于零,则打印出question的信息。

然后再解析出msg中的ANSWER并打印出来。

最后,我们可能得到这样的输出:

INFO  c.f.dnstcp.Do53ChannelInboundHandler - question is :DefaultDnsQuestion(www.flydean.com. IN A)
INFO  c.f.dnstcp.Do53ChannelInboundHandler - ip address is: 47.107.98.187

总结

以上就是使用netty创建DNS client进行TCP查询的讲解。

本文的代码,大家可以参考:

learn-netty4

更多内容请参考 http://www.flydean.com/54-netty-dns-over-tcp/

最通俗的解读,最深刻的干货,最简洁的教程,众多你不

欢迎关注我的公众号:「程序那些事」,懂技术,更懂你!

目录
打赏
0
0
0
0
605
分享
相关文章
阿里云服务器经济型e实例解析:性能、稳定性与兼顾成本
阿里云经济型e云服务器以其高性价比、稳定可靠的性能以及灵活多样的配置选项,成为了众多企业在搭建官网时的首选。那么,阿里云经济型e云服务器究竟怎么样?它是否能够满足企业官网的搭建需求?本文将从性能表现、稳定性与可靠性、成本考虑等多个方面对阿里云经济型e云服务器进行深入剖析,以供大家参考选择。
解析HTTP代理服务器不稳定致使掉线的关键原因
随着数字化发展,网络安全和隐私保护成为核心需求。HTTP代理服务器掉线原因主要包括:1. 网络问题,如本地网络不稳定、路由复杂;2. 服务器质量差、IP资源不稳定;3. 用户配置错误、超时或请求频率异常;4. IP失效或协议不兼容。这些问题会影响连接稳定性。
19 6
TCP/IP服务器
【10月更文挑战第20天】TCP/IP服务器
140 65
深入解析与防范:基于缓冲区溢出的FTP服务器攻击及调用计算器示例
本文深入解析了利用缓冲区溢出漏洞对FTP服务器进行远程攻击的技术,通过分析FreeFlow FTP 1.75版本的漏洞,展示了如何通过构造过长的用户名触发缓冲区溢出并调用计算器(`calc.exe`)。文章详细介绍了攻击原理、关键代码组件及其实现步骤,并提出了有效的防范措施,如输入验证、编译器保护和安全编程语言的选择,以保障系统的安全性。环境搭建基于Windows XP SP3和Kali Linux,使用Metasploit Framework进行攻击演示。请注意,此内容仅用于教育和研究目的。
79 4
阿里云服务器租用、注册域名、备案及域名解析完整流程参考(图文教程)
对于很多初次建站的用户来说,选购云服务器和注册应及备案和域名解析步骤必须了解的,目前轻量云服务器2核2G68元一年,2核4G4M服务器298元一年,域名注册方面,阿里云推出域名1元购买活动,新用户注册com和cn域名2年首年仅需0元,xyz和top等域名首年仅需1元。对于建站的用户来说,购买完云服务器并注册好域名之后,下一步还需要操作备案和域名绑定。本文为大家展示阿里云服务器的购买流程,域名注册、绑定以及备案的完整流程,全文以图文教程形式为大家展示具体细节及注意事项,以供新手用户参考。
云服务器成本优化深度解析与实战案例
本文深入探讨了云服务器成本优化的策略与实践,涵盖基本原则、具体策略及案例分析。基本原则包括以实际需求为导向、动态调整资源、成本控制为核心。具体策略涉及选择合适计费模式、优化资源配置、存储与网络配置、实施资源监控与审计、应用性能优化、利用优惠政策及考虑多云策略。文章还通过电商、制造企业和初创团队的实际案例,展示了云服务器成本优化的有效性,最后展望了未来的发展趋势,包括智能化优化、多云管理和绿色节能。
阿里云服务器计算型c8i实例解析:实例规格性能及使用场景和最新价格参考
计算型c8i实例作为阿里云服务器家族中的重要成员,以其卓越的计算性能、稳定的算力输出、强劲的I/O引擎以及芯片级的安全加固,广泛适用于机器学习推理、数据分析、批量计算、视频编码、游戏服务器前端、高性能科学和工程应用以及Web前端服务器等多种场景。本文将全面介绍阿里云服务器计算型c8i实例,从规格族特性、适用场景、详细规格指标、性能优势、实际应用案例,到最新的活动价格,以供大家参考。
阿里云GPU服务器全解析_GPU价格收费标准_GPU优势和使用说明
阿里云GPU云服务器提供强大的GPU算力,适用于深度学习、科学计算、图形可视化和视频处理等场景。作为亚太领先的云服务商,阿里云GPU云服务器具备高灵活性、易用性、容灾备份、安全性和成本效益,支持多种实例规格,满足不同业务需求。
507 2
"从入门到实践,全方位解析云服务器ECS的秘密——手把手教你轻松驾驭阿里云的强大计算力!"
【10月更文挑战第23天】云服务器ECS(Elastic Compute Service)是阿里云提供的基础云计算服务,允许用户在云端租用和管理虚拟服务器。ECS具有弹性伸缩、按需付费、简单易用等特点,适用于网站托管、数据库部署、大数据分析等多种场景。本文介绍ECS的基本概念、使用场景及快速上手指南。
112 3
DNS服务器故障不容小觑,从应急视角谈DNS架构
DNS服务器故障不容小觑,从应急视角谈DNS架构
85 4

相关产品

  • 云解析DNS
  • 推荐镜像

    更多
    AI助理

    你好,我是AI助理

    可以解答问题、推荐解决方案等