FAQ系列 | 如何保证主从复制数据一致性

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
云数据库 RDS MySQL,高可用系列 2核4GB
简介: FAQ系列 | 如何保证主从复制数据一致性

导读

MySQL主从复制环境中,如何才能保证主从数据的一致性呢?

关于主从复制

现在常用的MySQL高可用方案,十有八九是基于 MySQL的主从复制(replication)来设计的,包括常规的一主一从、双主模式,或者半同步复制(semi-sync replication)。

我们常常把MySQL replication说成是MySQL同步(sync),但事实上这个过程是异步(async)的。大概过程是这样的:

  1. 在master上提交事务后,并且写入binlog,返回事务成功标记;
  2. 将binlog发送到slave,转储成relay log;
  3. 在slave上再将relay log读取出来应用。

步骤1和步骤3之间是异步进行的,无需等待确认各自的状态,所以说MySQL replication是异步的。

MySQL semi-sync replication在之前的基础上做了加强完善,整个流程变成了下面这样:

  1. 首先,master和至少一个slave都要启用semi-sync replication模式;
  2. 某个slave连接到master时,会主动告知当前自己是否处于semi-sync模式;
  3. 在master上提交事务后,写入binlog后,还需要通知至少一个slave收到该事务,等待写入relay log并成功刷新到磁盘后,向master发送“slave节点已完成该事务”确认通知;
  4. master收到上述通知后,才可以真正完成该事务提交,返回事务成功标记;
  5. 在上述步骤中,当slave向master发送通知时间超过rpl_semi_sync_master_timeout设定值时,主从关系会从semi-sync模式自动调整成为传统的异步复制模式。

半同步复制看起来很美好有木有呢,但如果网络质量不高,是不是出现抖动,触发上述第5条的情况,会从半同步复制降级为普通复制;此外,采用半同步复制,会导致master上的tps性能下降非常严重,最严重的情况下可能会损失50%以上。

这样来看,除非需要非常严格保证数据一致性等迫不得已的场景,就不太建议使用半同步复制了。当然了,事实上我们也可以通过加强程序端的逻辑控制,来避免主从数据不一致时发生逻辑错误,比如说如果在从上读取到的数据和主不一致的话,那么就触发主从间的一次数据修复工作。或者,我们也可以用 pt-table-checksum & pt-table-sync 两个工具来校验并修复数据,只要运行频率适当,是可行的。

真想要提高多节点间的数据一致性,可以考虑采用PXC方案。现在已知用PXC规模较大的有qunar、sohu,如果团队里初期没有人能比较专注PXC的话,还是要谨慎些,毕竟和传统的主从复制差异很大,出现问题时需要花费更多精力去排查解决。

如何保证主从复制数据一致性

上面说完了异步复制、半同步复制、PXC,我们回到主题:在常规的主从复制场景里,如何能保证主从数据的一致性,不要出现数据丢失等问题呢?

在MySQL中,一次事务提交后,需要写undo、写redo、写binlog,写数据文件等等。在这个过程中,可能在某个步骤发生crash,就有可能导致主从数据的不一致。为了避免这种情况,我们需要调整主从上面相关选项配置,确保即便发生crash了,也不能发生主从复制的数据丢失。

1. 在master上修改配置

innodb_flush_log_at_trx_commit = 1
sync_binlog = 1

上述两个选项的作用是:保证每次事务提交后,都能实时刷新到磁盘中,尤其是确保每次事务对应的binlog都能及时刷新到磁盘中,只要有了binlog,InnoDB就有办法做数据恢复,不至于导致主从复制的数据丢失。

2. 在slave上修改配置

master_info_repository = "TABLE"

relay_log_info_repository = "TABLE"
relay_log_recovery = 1

上述前两个选项的作用是:确保在slave上和复制相关的元数据表也采用InnoDB引擎,受到InnoDB事务安全的保护,而后一个选项的作用是开启relay log自动修复机制,发生crash时,会自动判断哪些relay log需要重新从master上抓取回来再次应用,以此避免部分数据丢失的可能性。

通过上面几个选项的调整,就可以确保主从复制数据不会发生丢失了。但是,这并不能保证主从数据的绝对一致性,因为,有可能设置了ignore\do\rewrite等replication规则,或者某些SQL本身存在不确定因素,或者人为在slave上修改数据,最终导致主从数据不一致。这种情况下,可以采用pt-table-checksum 和 pt-table-sync 工具来进行数据的校验和修复。

            </div>
相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
相关文章
|
8天前
|
机器人 API 调度
基于 DMS Dify+Notebook+Airflow 实现 Agent 的一站式开发
本文提出“DMS Dify + Notebook + Airflow”三位一体架构,解决 Dify 在代码执行与定时调度上的局限。通过 Notebook 扩展 Python 环境,Airflow实现任务调度,构建可扩展、可运维的企业级智能 Agent 系统,提升大模型应用的工程化能力。
|
14天前
|
人工智能 数据可视化 Java
Spring AI Alibaba、Dify、LangGraph 与 LangChain 综合对比分析报告
本报告对比Spring AI Alibaba、Dify、LangGraph与LangChain四大AI开发框架,涵盖架构、性能、生态及适用场景。数据截至2025年10月,基于公开资料分析,实际发展可能随技术演进调整。
913 152
|
人工智能 前端开发 API
前端接入通义千问(Qwen)API:5 分钟实现你的 AI 问答助手
本文介绍如何在5分钟内通过前端接入通义千问(Qwen)API,快速打造一个AI问答助手。涵盖API配置、界面设计、流式响应、历史管理、错误重试等核心功能,并提供安全与性能优化建议,助你轻松集成智能对话能力到前端应用中。
651 154
|
负载均衡 Java 微服务
OpenFeign:让微服务调用像本地方法一样简单
OpenFeign是Spring Cloud中声明式微服务调用组件,通过接口注解简化远程调用,支持负载均衡、服务发现、熔断降级、自定义拦截器与编解码,提升微服务间通信开发效率与系统稳定性。
348 156
|
6天前
|
分布式计算 监控 API
DMS Airflow:企业级数据工作流编排平台的专业实践
DMS Airflow 是基于 Apache Airflow 构建的企业级数据工作流编排平台,通过深度集成阿里云 DMS(Data Management Service)系统的各项能力,为数据团队提供了强大的工作流调度、监控和管理能力。本文将从 Airflow 的高级编排能力、DMS 集成的特殊能力,以及 DMS Airflow 的使用示例三个方面,全面介绍 DMS Airflow 的技术架构与实践应用。
|
4天前
|
存储 Kubernetes Docker
部署eck收集日志到k8s
本文介绍基于ECK(Elastic Cloud on Kubernetes)在K8s中部署Elasticsearch、Kibana和Filebeat的完整流程。采用Helm方式部署ECK Operator,通过自定义YAML文件分别部署ES集群、Kibana及Filebeat,并实现日志采集与可视化。重点涵盖命名空间一致性、版本匹配、HTTPS配置禁用、资源限制、存储挂载及权限RBAC设置,支持系统日志、应用日志与容器日志的多源采集,适用于生产环境日志系统搭建。
243 94