[MySQL FAQ]系列 — 从MyISAM转到InnoDB需要注意什么

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
云数据库 RDS MySQL,高可用系列 2核4GB
简介: [MySQL FAQ]系列 — 从MyISAM转到InnoDB需要注意什么

这是[MySQL FAQ]系列,专门汇总日常使用MySQL遇到的一些小问题

问题

当前,绝大多数业务场景用InnoDB已经完全能搞定了,越来越多的业务从MyISAM转向InnoDB引擎,那么有哪些注意事项呢?

分析

当了解完两种引擎的不同之处,很轻松的就能知道有哪些关键点了。总的来说,从MyISAM转向InnoDB的注意事项有:

1、MyISAM的主键索引中,可以在非第一列(非第一个字段)使用自增列,而InnoDB的主键索引中包含自增列时,必须在最前面;这个特性在discuz论坛中,被设计用于“抢楼”功能,因此,若有类似的业务,则无法将该表从MyISAM转成InnoDB,需要自行变通实现(我们则是将其改到Redis中实现);

2、不带条件频繁统计全表总记录数时(SELECT COUNT(*) FROM TAB),InnoDB相对较慢,而MyISAM则飞快;不过,如果是基于索引条件的统计,则二者相差不大;

3、InnoDB在5.6以前不支持全文索引,不过这个相信无所谓,没什么人会在MySQL里直接跑全文索引,尤其是对中文的全文索引(前阵子有开发同学提需求直接被我否了),确实有需要的话,可以采用Sphinx、Lucene等其他方案实现;

4、一次性导入大量数据并且后续还要进行加工处理的,可以先导入到MyISAM引擎表中,经过一通加工处理完后,再导入InnoDB表(我曾经在业务中用此方法提高数据批量导入及处理效率);

5、InnoDB不支持LOAD TABLE FROM MASTER语法(不过应该也很少人使用吧);


从MyISAM转成InnoDB可以享受的好处则有:

1、完整事务特性支持,以及更高的数据并发存取效率,即更高的TPS;

2、数据库实例异常重启后,InnoDB表能自动修复,而且速度相对更快,而MyISAM需要被触发才能修复,且相对耗时可能多4~5倍甚至更多;

3、更高的数据读取性能,因为InnoDB把数据及索引同时缓存在内存中,而MyISAM只缓存了索引;

4、InnoDB支持外键(不过在MySQL中,应该很少人用到外键);


两个引擎间的重要区别详情见下:

MyISAM引擎的特点

1、堆组织表;

2、不支持事务;

3、数据文件和索引文件分开存储;

4、支持全文索引;

5、主键索引和二级索引完全一样都是B+树的数据结构,只有是否唯一的区别(主键和唯一索引有唯一属性,其他普通索引没有唯一属性。B+树叶子节点存储的都是指向行记录的row pointer);

6、有特殊计数器记录当前记录数;

7、不支持Crash recovery;

8、索引文件很容易损坏;

InnoDB引擎的特点

1、索引组织表;

2、支持事务;

3、数据文件和索引文件存储在同一个表空间中;

4、在5.6以前,不支持全文索引;

5、主键和二级索引数据结构一样都是B+树,但叶子节点存储的键值不一样(主键的叶子节点存储整行数据,因此也称为聚集索引;而二级索引的叶子节点存储的是主键的键值)

5、支持Crash recovery;

6、相同数据量时,InnoDB表空间文件大小约为MyISAM引擎的1.5~2倍;

关于InnoDB、MyISAM两种引擎的对比测试,可以参考Percona的这个对比:

http://www.percona.com/blog/2007/01/08/innodb-vs-myisam-vs-falcon-benchmarks-part-1/

            </div>
相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
相关文章
|
8天前
|
机器人 API 调度
基于 DMS Dify+Notebook+Airflow 实现 Agent 的一站式开发
本文提出“DMS Dify + Notebook + Airflow”三位一体架构,解决 Dify 在代码执行与定时调度上的局限。通过 Notebook 扩展 Python 环境,Airflow实现任务调度,构建可扩展、可运维的企业级智能 Agent 系统,提升大模型应用的工程化能力。
|
14天前
|
人工智能 数据可视化 Java
Spring AI Alibaba、Dify、LangGraph 与 LangChain 综合对比分析报告
本报告对比Spring AI Alibaba、Dify、LangGraph与LangChain四大AI开发框架,涵盖架构、性能、生态及适用场景。数据截至2025年10月,基于公开资料分析,实际发展可能随技术演进调整。
913 152
|
人工智能 前端开发 API
前端接入通义千问(Qwen)API:5 分钟实现你的 AI 问答助手
本文介绍如何在5分钟内通过前端接入通义千问(Qwen)API,快速打造一个AI问答助手。涵盖API配置、界面设计、流式响应、历史管理、错误重试等核心功能,并提供安全与性能优化建议,助你轻松集成智能对话能力到前端应用中。
651 154
|
负载均衡 Java 微服务
OpenFeign:让微服务调用像本地方法一样简单
OpenFeign是Spring Cloud中声明式微服务调用组件,通过接口注解简化远程调用,支持负载均衡、服务发现、熔断降级、自定义拦截器与编解码,提升微服务间通信开发效率与系统稳定性。
348 156
|
6天前
|
分布式计算 监控 API
DMS Airflow:企业级数据工作流编排平台的专业实践
DMS Airflow 是基于 Apache Airflow 构建的企业级数据工作流编排平台,通过深度集成阿里云 DMS(Data Management Service)系统的各项能力,为数据团队提供了强大的工作流调度、监控和管理能力。本文将从 Airflow 的高级编排能力、DMS 集成的特殊能力,以及 DMS Airflow 的使用示例三个方面,全面介绍 DMS Airflow 的技术架构与实践应用。
|
4天前
|
存储 Kubernetes Docker
部署eck收集日志到k8s
本文介绍基于ECK(Elastic Cloud on Kubernetes)在K8s中部署Elasticsearch、Kibana和Filebeat的完整流程。采用Helm方式部署ECK Operator,通过自定义YAML文件分别部署ES集群、Kibana及Filebeat,并实现日志采集与可视化。重点涵盖命名空间一致性、版本匹配、HTTPS配置禁用、资源限制、存储挂载及权限RBAC设置,支持系统日志、应用日志与容器日志的多源采集,适用于生产环境日志系统搭建。
243 94