容器化AI模型的安全防护:构建可信的AI服务
在AI模型广泛应用的背景下,容器化AI模型的安全防护至关重要。主要安全威胁包括数据窃取、模型窃取、对抗样本攻击和模型后门攻击等。为应对这些威胁,需采取多层次防护措施:容器安全(如使用可信镜像、限制权限)、模型安全(如加密、水印)、数据安全(如加密、脱敏)和推理安全(如输入验证、异常检测)。此外,利用开源工具如Anchore Engine、Falco和ART等,可进一步加强防护。遵循安全开发生命周期、最小权限原则和深度防御等最佳实践,确保AI服务的安全性和可信度。