PAI Designer RAM用户如何绑定单独Bucket对OSS数据访问

本文涉及的产品
对象存储 OSS,20GB 3个月
对象存储 OSS,内容安全 1000次 1年
对象存储 OSS,恶意文件检测 1000次 1年
简介: 机器学习平台PAI(Platform of Artificial Intelligence)是面向企业客户及开发者,提供轻量化、高性价比的云原生机器学习。是构建在阿里云MaxCompute(原ODPS)计算平台之上,集数据处理、建模、离线预测、在线预测为一体的机器学习平台。使用Designer进行建模时,需授予操作账号使用Designer功能所需的操作权限,同时需要授予PAI访问相关云产品的权限,以保障功能安全顺利地使用。在授权操作账号对OSS的操作权限时,支持通过自定义策略灵活定义RAM用户在PAI控制台中对OSS数据的访问权限。本文将使用主账号简单演示对RAM用户授予访问OSS数据的权限。

常见问题现象:You are forbidden to list buckets

lQLPJxZxUEB7yVDNAy7NBqiwzee3Xb2zcNQCurgX8wDWAA_1704_814.png_720x720q90g.jpg

1.通过自定义策略定义RAM用户对OSS数据的访问权限过程简单演示

  • 操作流程

    1. 主账号登录RAM控制台
    2. 在左侧导航栏,选择权限管理 > 权限策略
    3. 在权限策略页面,单击创建权限策略
    4. 在创建权限策略页面,单击脚本编辑页签
    5. 输入权限策略内容,然后单击下一步:编辑基本信息。自定义权限策略参考
    6. 输入权限策略名称和备注,并单击确定
    7. 在左侧导航栏,选择身份管理 > 用户
    8. 在用户页面,单击目标RAM用户操作列的添加权限
    9. 在添加权限面板,为RAM用户添加自定义策略权限
    10. 单击确定,单击完成
    11. 登录子账号再次调用查看
  • 主账号登录RAM控制台创建权限策略

JELnBuZw==.png


  • 输入权限策略内容,单击下一步

Y4LnBuZw==.png


  • 输入权限策略名称和备注

zBDLnBuZw==.png


  • 在添加权限面板,为相应RAM用户添加定义策略权限

ZGLnBuZw==.png


BENDRBQTI5LnBuZw==.png


  • 登录子账号进入工作流再次查看

YTc5Y2U3YzBj.png


QzdGNDI5MTVELnBuZw==.png

更多参考

云产品依赖与授权:Designer

相关实践学习
借助OSS搭建在线教育视频课程分享网站
本教程介绍如何基于云服务器ECS和对象存储OSS,搭建一个在线教育视频课程分享网站。
目录
相关文章
|
19天前
|
机器学习/深度学习 人工智能 自然语言处理
模型训练数据-MinerU一款Pdf转Markdown软件
MinerU是由上海人工智能实验室OpenDataLab团队开发的开源智能数据提取工具,专长于复杂PDF文档的高效解析与提取。它能够将含有图片、公式、表格等多模态内容的PDF文档转化为Markdown格式,同时支持从网页和电子书中提取内容,显著提升了AI语料准备的效率。MinerU具备高精度的PDF模型解析工具链,能自动识别乱码,保留文档结构,并将公式转换为LaTeX格式,广泛适用于学术、财务、法律等领域。
113 4
|
1月前
|
机器学习/深度学习 数据采集 数据处理
谷歌提出视觉记忆方法,让大模型训练数据更灵活
谷歌研究人员提出了一种名为“视觉记忆”的方法,结合了深度神经网络的表示能力和数据库的灵活性。该方法将图像分类任务分为图像相似性和搜索两部分,支持灵活添加和删除数据、可解释的决策机制以及大规模数据处理能力。实验结果显示,该方法在多个数据集上取得了优异的性能,如在ImageNet上实现88.5%的top-1准确率。尽管有依赖预训练模型等限制,但视觉记忆为深度学习提供了新的思路。
34 2
|
2月前
|
机器学习/深度学习 存储 人工智能
揭秘机器学习背后的神秘力量:如何高效收集数据,让AI更懂你?
【10月更文挑战第12天】在数据驱动的时代,机器学习广泛应用,从智能推荐到自动驾驶。本文以电商平台个性化推荐系统为例,探讨数据收集方法,包括明确数据需求、选择数据来源、编写代码自动化收集、数据清洗与预处理及特征工程,最终完成数据的训练集和测试集划分,为模型训练奠定基础。
74 3
|
2月前
|
机器学习/深度学习 算法 Python
“探秘机器学习的幕后英雄:梯度下降——如何在数据的海洋中寻找那枚失落的钥匙?”
【10月更文挑战第11天】梯度下降是机器学习和深度学习中的核心优化算法,用于最小化损失函数,找到最优参数。通过计算损失函数的梯度,算法沿着负梯度方向更新参数,逐步逼近最小值。常见的变种包括批量梯度下降、随机梯度下降和小批量梯度下降,各有优缺点。示例代码展示了如何用Python和NumPy实现简单的线性回归模型训练。掌握梯度下降有助于深入理解模型优化机制。
40 2
|
3月前
|
云栖大会 对象存储
PAI-EAS 和 OSS 免费资源包
【9月更文挑战第23天】
51 8
|
3月前
|
机器学习/深度学习 数据采集 监控
探索机器学习:从数据到决策
【9月更文挑战第18天】在这篇文章中,我们将一起踏上一段激动人心的旅程,穿越机器学习的世界。我们将探讨如何通过收集和处理数据,利用算法的力量来预测未来的趋势,并做出更加明智的决策。无论你是初学者还是有经验的开发者,这篇文章都将为你提供新的视角和思考方式。
|
2月前
|
机器学习/深度学习 算法 数据处理
EM算法对人脸数据降维(机器学习作业06)
本文介绍了使用EM算法对人脸数据进行降维的机器学习作业。首先通过加载ORL人脸数据库,然后分别应用SVD_PCA、MLE_PCA及EM_PCA三种方法实现数据降维,并输出降维后的数据形状。此作业展示了不同PCA变种在人脸数据处理中的应用效果。
42 0
|
3月前
|
机器学习/深度学习 数据采集 算法
利用未标记数据的半监督学习在模型训练中的效果评估
本文将介绍三种适用于不同类型数据和任务的半监督学习方法。我们还将在一个实际数据集上评估这些方法的性能,并与仅使用标记数据的基准进行比较。
312 8
|
2月前
|
机器学习/深度学习 算法 数据建模
【机器学习】类别不平衡数据的处理
【机器学习】类别不平衡数据的处理
|
4月前
|
缓存 开发者 测试技术
跨平台应用开发必备秘籍:运用 Uno Platform 打造高性能与优雅设计兼备的多平台应用,全面解析从代码共享到最佳实践的每一个细节
【8月更文挑战第31天】Uno Platform 是一种强大的工具,允许开发者使用 C# 和 XAML 构建跨平台应用。本文探讨了 Uno Platform 中实现跨平台应用的最佳实践,包括代码共享、平台特定功能、性能优化及测试等方面。通过共享代码、采用 MVVM 模式、使用条件编译指令以及优化性能,开发者可以高效构建高质量应用。Uno Platform 支持多种测试方法,确保应用在各平台上的稳定性和可靠性。这使得 Uno Platform 成为个人项目和企业应用的理想选择。
80 0