Java并发之AbstractQueuedSynchronizer(AQS)详解

简介: Java并发之AbstractQueuedSynchronizer(AQS)详解

前言

Java编程学到并发这块,我们不得不提及ReentrantLock;而关于ReentrantLock,又要求我们必须要掌握好AQS!


目录

一、AQS简单介绍

二、AQS原理及框架

三、AQS对资源的共享方式


一、AQS简单介绍

何为AQS?AQS 的全称为 AbstractQueuedSynchronizer,翻译过来的意思就是抽象队列同步器。AQS定义了一套多线程访问共享资源的同步器框架,许多同步类实现都依赖于它,如常用的ReentrantLock/Semaphore/CountDownLatch...。这个类在 java.util.concurrent.locks 包下面。

image.gif编辑

AQS 就是一个抽象类,主要用来构建锁和同步器

public abstract class AbstractQueuedSynchronizer extends AbstractOwnableSynchronizer implements java.io.Serializable {
}

AQS 为构建锁和同步器提供了一些通用功能的是实现,因此,使用 AQS 能简单且高效地构造出应用广泛的大量的同步器,比如我们提到的 ReentrantLockSemaphore其他的诸如 ReentrantReadWriteLockSynchronousQueueFutureTask(jdk1.7)等等皆是基于 AQS 的。

二、AQS原理及框架

AQS 核心思想是,如果被请求的共享资源空闲,则将当前请求资源的线程设置为有效的工作线程,并且将共享资源设置为锁定状态。如果被请求的共享资源被占用,那么就需要一套线程阻塞等待以及被唤醒时锁分配的机制,这个机制 AQS 是用 CLH 队列锁实现的,即将暂时获取不到锁的线程加入到队列中

CLH(Craig,Landin,and Hagersten)队列是一个虚拟的双向队列(虚拟的双向队列即不存在队列实例,仅存在结点之间的关联关系)。AQS 是将每条请求共享资源的线程封装成一个 CLH 锁队列的一个结点(Node)来实现锁的分配。

看个 AQS(AbstractQueuedSynchronizer)原理图:

image.gif

它维护了一个volatile int state(代表共享资源)和一个FIFO线程等待队列(多线程争用资源被阻塞时会进入此队列)。这里volatile是核心关键词,具体volatile的语义,在此不述。state的访问方式有三种:

①getState()
②setState()
③compareAndSetState()

示例:

//返回同步状态的当前值
protected final int getState() {
        return state;
}
 // 设置同步状态的值
protected final void setState(int newState) {
        state = newState;
}
//原子地(CAS操作)将同步状态值设置为给定值update如果当前同步状态的值等于expect(期望值)
protected final boolean compareAndSetState(int expect, int update) {
        return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
}

image.gif

三、AQS对资源的共享方式

AQS定义两种资源共享方式:Exclusive独占,只有一个线程能执行,如ReentrantLock )和Share共享,多个线程可同时执行,如Semaphore/CountDownLatch)。

不同的自定义同步器争用共享资源的方式也不同。自定义同步器在实现时只需要实现共享资源state的获取与释放方式即可,至于具体线程等待队列的维护(如获取资源失败入队/唤醒出队等),AQS已经在顶层实现好了。自定义同步器实现时主要实现以下几种方法:

① isHeldExclusively():该线程是否正在独占资源。只有用到condition才需要去实现它。

② tryAcquire(int):独占方式。尝试获取资源,成功则返回true,失败则返回false。

③ tryRelease(int):独占方式。尝试释放资源,成功则返回true,失败则返回false。

④ tryAcquireShared(int):共享方式。尝试获取资源。负数表示失败;0表示成功,但没有剩余可用资源;正数表示成功,且有剩余资源。

⑤ tryReleaseShared(int):共享方式。尝试释放资源,如果释放后允许唤醒后续等待结点返回true,否则返回false。


ReentrantLock为例,state初始化为0,表示未锁定状态。A线程lock()时,会调用tryAcquire()独占该锁并将state+1。此后,其他线程再tryAcquire()时就会失败,直到A线程unlock()到state=0(即释放锁)为止,其它线程才有机会获取该锁。当然,释放锁之前,A线程自己是可以重复获取此锁的(state会累加),这就是可重入的概念。但要注意,获取多少次就要释放多么次,这样才能保证state是能回到零态的。

下面来看 ReentrantLock 中相关的源代码:

ReentrantLock 默认采用非公平锁,因为考虑获得更好的性能,通过 boolean 来决定是否用公平锁(传入 true 用公平锁)。

/** Synchronizer providing all implementation mechanics */
private final Sync sync;
public ReentrantLock() {
    // 默认非公平锁
    sync = new NonfairSync();
}
public ReentrantLock(boolean fair) {
    sync = fair ? new FairSync() : new NonfairSync();
}

ReentrantLock 中公平锁的 lock 方法:

static final class FairSync extends Sync {
    final void lock() {
        acquire(1);
    }
    // AbstractQueuedSynchronizer.acquire(int arg)
    public final void acquire(int arg) {
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }
    protected final boolean tryAcquire(int acquires) {
        final Thread current = Thread.currentThread();
        int c = getState();
        if (c == 0) {
            // 1. 和非公平锁相比,这里多了一个判断:是否有线程在等待
            if (!hasQueuedPredecessors() &&
                compareAndSetState(0, acquires)) {
                setExclusiveOwnerThread(current);
                return true;
            }
        }
        else if (current == getExclusiveOwnerThread()) {
            int nextc = c + acquires;
            if (nextc < 0)
                throw new Error("Maximum lock count exceeded");
            setState(nextc);
            return true;
        }
        return false;
    }
}

image.gif

非公平锁的 lock 方法:

static final class NonfairSync extends Sync {
    final void lock() {
        // 2. 和公平锁相比,这里会直接先进行一次CAS,成功就返回了
        if (compareAndSetState(0, 1))
            setExclusiveOwnerThread(Thread.currentThread());
        else
            acquire(1);
    }
    // AbstractQueuedSynchronizer.acquire(int arg)
    public final void acquire(int arg) {
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }
    protected final boolean tryAcquire(int acquires) {
        return nonfairTryAcquire(acquires);
    }
}
/**
 * Performs non-fair tryLock.  tryAcquire is implemented in
 * subclasses, but both need nonfair try for trylock method.
 */
final boolean nonfairTryAcquire(int acquires) {
    final Thread current = Thread.currentThread();
    int c = getState();
    if (c == 0) {
        // 这里没有对阻塞队列进行判断
        if (compareAndSetState(0, acquires)) {
            setExclusiveOwnerThread(current);
            return true;
        }
    }
    else if (current == getExclusiveOwnerThread()) {
        int nextc = c + acquires;
        if (nextc < 0) // overflow
            throw new Error("Maximum lock count exceeded");
        setState(nextc);
        return true;
    }
    return false;
}

image.gif

再以CountDownLatch以例,任务分为N个子线程去执行,state也初始化为N(注意N要与线程个数一致)。这N个子线程是并行执行的,每个子线程执行完后countDown()一次,state会CAS减1。等到所有子线程都执行完后(即state=0),会unpark()主调用线程,然后主调用线程就会从await()函数返回,继续后余动作。

一般来说,自定义同步器要么是独占方法,要么是共享方式,他们也只需实现tryAcquire-tryRelease、tryAcquireShared-tryReleaseShared中的一种即可。但AQS也支持自定义同步器同时实现独占和共享两种方式,如ReentrantReadWriteLock。


相关文章
|
7天前
|
安全 Java Go
Java vs. Go:并发之争
【4月更文挑战第20天】
14 1
|
7天前
|
数据采集 存储 Java
高德地图爬虫实践:Java多线程并发处理策略
高德地图爬虫实践:Java多线程并发处理策略
|
8天前
|
搜索推荐 Java
[Java探索者之路] Java中的AbstractQueuedSynchronizer(AQS)简介
[Java探索者之路] Java中的AbstractQueuedSynchronizer(AQS)简介
|
8天前
|
Java API
[Java 并发基础]多线程编程
[Java 并发基础]多线程编程
|
9天前
|
安全 Java 调度
[Java并发基础] 共享内存
[Java并发基础] 共享内存
|
9天前
|
Java API 调度
[Java并发基础]多进程编程
[Java并发基础]多进程编程
|
9天前
|
设计模式 Java 编译器
深入理解Java中的多线程并发控制
Java作为一种流行的编程语言,其多线程并发控制机制一直是开发者关注的焦点。本文旨在通过探讨Java中的多线程并发控制原理、常用同步工具及设计模式,帮助读者深入理解并有效应用多线程并发控制技术,以提高程序性能和稳定性。
|
9天前
|
监控 安全 Java
一文讲明白Java中线程与进程、并发与并行、同步与异步
一文讲明白Java中线程与进程、并发与并行、同步与异步
7 1
|
14天前
|
监控 安全 Java
【JavaEE多线程】深入解析Java并发工具类与应用实践
【JavaEE多线程】深入解析Java并发工具类与应用实践
30 1
|
14天前
|
安全 Java
深入理解 Java 多线程和并发工具类
【4月更文挑战第19天】本文探讨了Java多线程和并发工具类在实现高性能应用程序中的关键作用。通过继承`Thread`或实现`Runnable`创建线程,利用`Executors`管理线程池,以及使用`Semaphore`、`CountDownLatch`和`CyclicBarrier`进行线程同步。保证线程安全、实现线程协作和性能调优(如设置线程池大小、避免不必要同步)是重要环节。理解并恰当运用这些工具能提升程序效率和可靠性。