FAQ系列 | B+树索引和哈希索引的区别

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
云数据库 RDS PostgreSQL,高可用系列 2核4GB
简介: FAQ系列 | B+树索引和哈希索引的区别

导读

在MySQL里常用的索引数据结构有B+树索引和哈希索引两种,我们来看下这两种索引数据结构的区别及其不同的应用建议。

二者区别

备注:先说下,在MySQL文档里,实际上是把B+树索引写成了BTREE,例如像下面这样的写法:

CREATE TABLE t(

aid int unsigned not null auto_increment,

userid int unsigned not null default 0,

username varchar(20) not null default ‘’,

detail varchar(255) not null default ‘’,

primary key(aid),

unique key(uid) USING BTREE,

key (username(12)) USING BTREE此处 uname 列只创建了最左12个字符长度的部分索引

)engine=InnoDB;

一个经典的B+树索引数据结构见下图:

image.png

(图片源自网络)

B+树是一个平衡的多叉树,从根节点到每个叶子节点的高度差值不超过1,而且同层级的节点间有指针相互链接。

在B+树上的常规检索,从根节点到叶子节点的搜索效率基本相当,不会出现大幅波动,而且基于索引的顺序扫描时,也可以利用双向指针快速左右移动,效率非常高。

因此,B+树索引被广泛应用于数据库、文件系统等场景。顺便说一下,xfs文件系统比ext3/ext4效率高很多的原因之一就是,它的文件及目录索引结构全部采用B+树索引,而ext3/ext4的文件目录结构则采用Linked list, hashed B-tree、Extents/Bitmap等索引数据结构,因此在高I/O压力下,其IOPS能力不如xfs。


详细可参见:

https://en.wikipedia.org/wiki/Ext4
https://en.wikipedia.org/wiki/XFS


哈希索引的示意图则是这样的:

image.png

(图片源自网络)

简单地说,哈希索引就是采用一定的哈希算法,把键值换算成新的哈希值,检索时不需要类似B+树那样从根节点到叶子节点逐级查找,只需一次哈希算法即可立刻定位到相应的位置,速度非常快。

从上面的图来看,B+树索引和哈希索引的明显区别是:

  • 如果是等值查询,那么哈希索引明显有绝对优势,因为只需要经过一次算法即可找到相应的键值;当然了,这个前提是,键值都是唯一的。如果键值不是唯一的,就需要先找到该键所在位置,然后再根据链表往后扫描,直到找到相应的数据;
  • 从示意图中也能看到,如果是范围查询检索,这时候哈希索引就毫无用武之地了,因为原先是有序的键值,经过哈希算法后,有可能变成不连续的了,就没办法再利用索引完成范围查询检索;
  • 同理,哈希索引也没办法利用索引完成排序,以及like ‘xxx%’ 这样的部分模糊查询(这种部分模糊查询,其实本质上也是范围查询);
  • 哈希索引也不支持多列联合索引的最左匹配规则
  • B+树索引的关键字检索效率比较平均,不像B树那样波动幅度大,在有大量重复键值情况下,哈希索引的效率也是极低的,因为存在所谓的哈希碰撞问题

后记

在MySQL中,只有HEAP/MEMORY引擎表才能显式支持哈希索引(NDB也支持,但这个不常用),InnoDB引擎的自适应哈希索引(adaptive hash index)不在此列,因为这不是创建索引时可指定的。

还需要注意到:HEAP/MEMORY引擎表在mysql实例重启后,数据会丢失。

通常,B+树索引结构适用于绝大多数场景,像下面这种场景用哈希索引才更有优势:

在HEAP表中,如果存储的数据重复度很低(也就是说基数很大),对该列数据以等值查询为主,没有范围查询、没有排序的时候,特别适合采用哈希索引

例如这种SQL:

SELECT … FROM t WHERE C1 = ?; — 仅等值查询

在大多数场景下,都会有范围查询、排序、分组等查询特征,用B+树索引就可以了。

            </div>
相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
相关文章
|
存储 物联网 测试技术
改变LoRA的初始化方式,北大新方法PiSSA显著提升微调效果
【4月更文挑战第23天】北京大学团队提出的新方法PiSSA,基于SVD进行参数高效微调,降低计算成本。PiSSA通过聚焦低秩矩阵训练,实现与全参数微调相当甚至更好的性能,快于LoRA收敛且在五个基准测试中胜出。PiSSA继承LoRA的参数效率,初始化仅需几秒,适合快速适应不同下游任务。尽管有潜力,但其在更大模型和任务上的效果,以及与LoRA结合的可能优化,仍是未来研究课题。[链接](https://arxiv.org/pdf/2404.02948.pdf)
378 7
|
6月前
|
机器学习/深度学习 存储 人工智能
SEARCH-R1: 基于强化学习的大型语言模型多轮搜索与推理框架
SEARCH-R1是一种创新的强化学习框架,使大型语言模型(LLM)具备多轮搜索与推理能力。它通过强化学习自主生成查询并优化基于检索结果的推理,无需人工标注数据。相比传统RAG或工具使用方法,SEARCH-R1显著提升问答性能,在多个数据集上实现26%以上的相对性能提升。其核心优势在于强化学习与搜索的深度融合、交错式多轮推理机制及令牌级损失屏蔽技术,推动了LLM在复杂推理和实时知识获取方面的边界。尽管存在奖励函数设计简化等局限性,SEARCH-R1为构建更智能的交互系统提供了重要参考。
503 7
SEARCH-R1: 基于强化学习的大型语言模型多轮搜索与推理框架
|
数据采集 Python
半小时速通Python爬虫!GitHub开源的Python爬虫入门教程
今天给小伙伴们带来了一篇详细介绍 Python 爬虫入门的教程,从实战出发,适合初学者。 小伙伴们只需在阅读过程紧跟文章思路,理清相应的实现代码,30 分钟即可学会编写简单的 Python 爬虫。
|
缓存 IDE Java
IntelliJ IDEA 2023.1 正式发布,看看又多了那些神仙功能..
IntelliJ IDEA 2023.1 正式发布,看看又多了那些神仙功能..
165 0
|
存储 Kubernetes 容器
K8S中使用nfs作为存储卷
K8S中使用nfs作为存储卷
148 0
|
机器学习/深度学习 数据处理 计算机视觉
LabelStudio环境搭建以及使用且解除上传文件限制
LabelStudio是开源的数据标注工具,支持多种类型如文本、图像、音频、视频的标注任务。它具有多种标注类型、可扩展性、团队协作和版本控制等功能,并可在本地、云端或Docker中部署。通过设置环境变量`DATA_UPLOAD_MAX_NUMBER_FILES`,可以解除上传文件数量限制。使用Docker安装时,可运行包含该变量的命令以启动容器,并通过http://localhost:8080访问。遇到文件数限制问题,可增大此变量值以解决。
3255 3
|
druid Java 数据库
SpringBoot整合Druid
SpringBoot整合Druid
226 0
|
存储 缓存 Shell
【Shell 命令集合 磁盘维护 】⭐⭐⭐Linux 将文件系统的缓冲区数据立即写入磁盘 sync 命令使用教程
【Shell 命令集合 磁盘维护 】⭐⭐⭐Linux 将文件系统的缓冲区数据立即写入磁盘 sync 命令使用教程
252 1
|
编解码 开发框架 .NET
AAC头部格式,RTP打包格式
一共有2种AAC头格式,一种是StreamMuxConfig,另一种是AudioSpecificConfig 1、AudioSpecificConfig 读写header的代码参考    ffmpeg libavcodec\aacenc.
2346 0
|
6天前
|
人工智能 运维 安全