MySQL的优化——提升大量数据查询效率的神器(二)

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: MySQL的优化——提升大量数据查询效率的神器

使用索引优化

索引是数据库优化最常用也是最重要的手段之一, 通过索引通常可以帮助用户解决大多数的MySQL的性能优化问题。

create table `tb_seller` (
    `sellerid` varchar (100),
    `name` varchar (100),
    `nickname` varchar (50),
    `password` varchar (60),
    `status` varchar (1),
    `address` varchar (100),
    `createtime` datetime,
    primary key(`sellerid`)
);

索引是数据库优化最常用也是最重要的手段之一, 通过索引通常可以帮助用户解决大多数的MySQL的性能优化问题。


insert into `tb_seller` (`sellerid`, `name`, `nickname`, `password`, `status`, `address`, `createtime`) values('alibaba','阿里巴巴','阿里小店','e10adc3949ba59abbe56e057f20f883e','1','北京市','2088-01-01 12:00:00');
insert into `tb_seller` (`sellerid`, `name`, `nickname`, `password`, `status`, `address`, `createtime`) values('baidu','百度科技有限公司','百度小店','e10adc3949ba59abbe56e057f20f883e','1','北京市','2088-01-01 12:00:00');
insert into `tb_seller` (`sellerid`, `name`, `nickname`, `password`, `status`, `address`, `createtime`) values('huawei','华为科技有限公司','华为小店','e10adc3949ba59abbe56e057f20f883e','0','北京市','2088-01-01 12:00:00');
insert into `tb_seller` (`sellerid`, `name`, `nickname`, `password`, `status`, `address`, `createtime`) values('itcast','传智播客教育科技有限公司','传智播客','e10adc3949ba59abbe56e057f20f883e','1','北京市','2088-01-01 12:00:00');
insert into `tb_seller` (`sellerid`, `name`, `nickname`, `password`, `status`, `address`, `createtime`) values('itheima','黑马程序员','黑马程序员','e10adc3949ba59abbe56e057f20f883e','0','北京市','2088-01-01 12:00:00');
insert into `tb_seller` (`sellerid`, `name`, `nickname`, `password`, `status`, `address`, `createtime`) values('luoji','罗技科技有限公司','罗技小店','e10adc3949ba59abbe56e057f20f883e','1','北京市','2088-01-01 12:00:00');
insert into `tb_seller` (`sellerid`, `name`, `nickname`, `password`, `status`, `address`, `createtime`) values('oppo','OPPO科技有限公司','OPPO官方旗舰店','e10adc3949ba59abbe56e057f20f883e','0','北京市','2088-01-01 12:00:00');
insert into `tb_seller` (`sellerid`, `name`, `nickname`, `password`, `status`, `address`, `createtime`) values('ourpalm','掌趣科技股份有限公司','掌趣小店','e10adc3949ba59abbe56e057f20f883e','1','北京市','2088-01-01 12:00:00');
insert into `tb_seller` (`sellerid`, `name`, `nickname`, `password`, `status`, `address`, `createtime`) values('qiandu','千度科技','千度小店','e10adc3949ba59abbe56e057f20f883e','2','北京市','2088-01-01 12:00:00');
insert into `tb_seller` (`sellerid`, `name`, `nickname`, `password`, `status`, `address`, `createtime`) values('sina','新浪科技有限公司','新浪官方旗舰店','e10adc3949ba59abbe56e057f20f883e','1','北京市','2088-01-01 12:00:00');
insert into `tb_seller` (`sellerid`, `name`, `nickname`, `password`, `status`, `address`, `createtime`) values('xiaomi','小米科技','小米官方旗舰店','e10adc3949ba59abbe56e057f20f883e','1','西安市','2088-01-01 12:00:00');
insert into `tb_seller` (`sellerid`, `name`, `nickname`, `password`, `status`, `address`, `createtime`) values('yijia','宜家家居','宜家家居旗舰店','e10adc3949ba59abbe56e057f20f883e','1','北京市','2088-01-01 12:00:00');
-- 创建组合索引 
create index idx_seller_name_sta_addr on tb_seller(name,status,address);


该情况下,索引生效,执行效率高。


explain select * from tb_seller where name='小米科技' and status='1' and address='北京市';


避免索引失效应用-最左前缀法则

-- 最左前缀法则
 -- 如果索引了多列,要遵守最左前缀法则。指的是查询从索引的最左前列开始,并且不跳过索引中的列。
explain select * from tb_seller where name='小米科技'; -- 403
explain select * from tb_seller where name='小米科技' and status='1'; -- 410
explain select * from tb_seller where  status='1' and name='小米科技'; -- 410
-- 违法最左前缀法则 , 索引失效:
explain select * from tb_seller where status='1'; -- nulll
-- 如果符合最左法则,但是出现跳跃某一列,只有最左列索引生效:
explain select * from tb_seller where name='小米科技'  and address='北京市'; -- 403

索引失效应用-其他匹配原则

-- 范围查询右边的列,不能使用索引 。 
explain select * from tb_seller where name='小米科技' and status >'1' and address='北京市’; 
-- 不要在索引列上进行运算操作, 索引将失效。 
explain select * from tb_seller where substring(name,3,2)='科技’ 
-- 字符串不加单引号,造成索引失效。 
explain select * from tb_seller where name='小米科技' and status = 1 ;

避免索引失效应用-其他匹配原则


-- 1、范围查询右边的列,不能使用索引 。
-- 根据前面的两个字段name , status 查询是走索引的, 但是最后一个条件address 没有用到索引。
explain select * from tb_seller where name='小米科技' and status >'1' and address='北京市';
-- 2、不要在索引列上进行运算操作, 索引将失效。
explain select * from tb_seller where substring(name,3,2)='科技'
-- 3、字符串不加单引号,造成索引失效。 
explain select * from tb_seller where name='小米科技' and status = 1 ;
-- 4、尽量使用覆盖索引,避免select *
-- 需要从原表及磁盘上读取数据
explain select * from tb_seller where name='小米科技'  and address='北京市';  -- 效率低
-- 从索引树中就可以查询到所有数据
explain select name from tb_seller where name='小米科技'  and address='北京市';  -- 效率高
explain select name,status,address from tb_seller where name='小米科技'  and address='北京市';  -- 效率高
-- 如果查询列,超出索引列,也会降低性能。
explain select name,status,address,password from tb_seller where name='小米科技'  and address='北京市';  -- 效率低
-- 尽量使用覆盖索引,避免select *
-- 需要从原表及磁盘上读取数据
explain select * from tb_seller where name='小米科技'  and address='北京市';  -- 效率低
-- 从索引树中就可以查询到所有数据
explain select name from tb_seller where name='小米科技'  and address='北京市';  -- 效率高
explain select name,status,address from tb_seller where name='小米科技'  and address='北京市';  -- 效率高
-- 如果查询列,超出索引列,也会降低性能。
explain select name,status,address,password from tb_seller where name='小米科技'  and address='北京市';  -- 效率低
-- 用or分割开的条件, 那么涉及的索引都不会被用到。
explain select * from tb_seller where name='黑马程序员' or createtime = '2088-01-01 12:00:00'; 
explain select * from tb_seller where name='黑马程序员' or address = '西安市';  
explain select * from tb_seller where name='黑马程序员' or status = '1';   
-- 以%开头的Like模糊查询,索引失效。
explain select * from tb_seller where name like '科技%'; -- 用索引
explain select * from tb_seller where name like '%科技'; -- 不用索引
explain select * from tb_seller where name like '%科技%';-- 不用索引
-- 弥补不足,不用*,使用索引列
explain select name from tb_seller where name like '%科技%';
--  1、如果MySQL评估使用索引比全表更慢,则不使用索引。
  -- 这种情况是由数据本身的特点来决定的
create index index_address on tb_seller(address);
explain select * from tb_seller where address = '北京市'; -- 没有使用索引
explain select * from tb_seller where address = '西安市'; -- 没有使用索引
--  2、is  NULL , is NOT NULL  有时有效,有时索引失效。
create index index_address on tb_seller(nickname);
explain select * from tb_seller where nickname is NULL;  -- 索引有效
explain select * from tb_seller where nickname is not NULL; -- 无效

SQL优化

create table `tb_user` (
  `id` int(11) not null auto_increment,
  `username` varchar(45) not null,
  `password` varchar(96) not null,
  `name` varchar(45) not null,
  `birthday` datetime default null,
  `sex` char(1) default null,
  `email` varchar(45) default null,
  `phone` varchar(45) default null,
  `qq` varchar(32) default null,
  `status` varchar(32) not null comment '用户状态',
  `create_time` datetime not null,
  `update_time` datetime default null,
  primary key (`id`),
  unique key `unique_user_username` (`username`)
);

当使用load 命令导入数据的时候,适当的设置可以提高导入的效率。对于 InnoDB 类型的表,有以下几种方式可以提高导入的效率:


大量插入数据

1) 主键顺序插入


因为InnoDB类型的表是按照主键的顺序保存的,所以将导入的数据按照主键的顺序排列,可以有效的提高导入数据的效率。如果InnoDB表没有主键,那么系统会自动默认创建一个内部列作为主键,所以如果可以给表创建一个主键,将可以利用这点,来提高导入数据的效率。


image.png

-- 1、首先,检查一个全局系统变量 'local_infile' 的状态, 如果得到如下显示 Value=OFF,则说明这是不可用的
show global variables like 'local_infile';
-- 2、修改local_infile值为on,开启local_infile
set global local_infile=1;
-- 3、加载数据 
/*
脚本文件介绍 :
    sql1.log  ----> 主键有序
    sql2.log  ----> 主键无序
*/
load data local infile 'D:\\sql_data\\sql1.log' into table tb_user fields terminated by ',' lines terminated by '\n';


 2 )、关闭唯一性校验


在导入数据前执行 SET UNIQUE_CHECKS=0,关闭唯一性校验,在导入结束后执行SET UNIQUE_CHECKS=1,恢复唯一性校验,可以提高导入的效率。

-- 关闭唯一性校验
SET UNIQUE_CHECKS=0;
truncate table tb_user;
load data local infile 'D:\\sql_data\\sql1.log' into table tb_user fields terminated by ',' lines terminated by '\n';
SET UNIQUE_CHECKS=1;


优化insert语句

-- 数据有序插入
insert into tb_test values(4,'Tim');
insert into tb_test values(1,'Tom');
insert into tb_test values(3,'Jerry');
insert into tb_test values(5,'Rose');
insert into tb_test values(2,'Cat');
-- 优化后
insert into tb_test values(1,'Tom');
insert into tb_test values(2,'Cat');
insert into tb_test values(3,'Jerry');
insert into tb_test values(4,'Tim');
insert into tb_test values(5,'Rose');

优化order by语句

CREATE TABLE `emp` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `name` varchar(100) NOT NULL,
  `age` int(3) NOT NULL,
  `salary` int(11) DEFAULT NULL,
  PRIMARY KEY (`id`)
);
insert into `emp` (`id`, `name`, `age`, `salary`) values('1','Tom','25','2300');
insert into `emp` (`id`, `name`, `age`, `salary`) values('2','Jerry','30','3500');
insert into `emp` (`id`, `name`, `age`, `salary`) values('3','Luci','25','2800');
insert into `emp` (`id`, `name`, `age`, `salary`) values('4','Jay','36','3500');
insert into `emp` (`id`, `name`, `age`, `salary`) values('5','Tom2','21','2200');
insert into `emp` (`id`, `name`, `age`, `salary`) values('6','Jerry2','31','3300');
insert into `emp` (`id`, `name`, `age`, `salary`) values('7','Luci2','26','2700');
insert into `emp` (`id`, `name`, `age`, `salary`) values('8','Jay2','33','3500');
insert into `emp` (`id`, `name`, `age`, `salary`) values('9','Tom3','23','2400');
insert into `emp` (`id`, `name`, `age`, `salary`) values('10','Jerry3','32','3100');
insert into `emp` (`id`, `name`, `age`, `salary`) values('11','Luci3','26','2900');
insert into `emp` (`id`, `name`, `age`, `salary`) values('12','Jay3','37','4500');
create index idx_emp_age_salary on emp(age,salary);

2、两种排序方式


第一种是通过对返回数据进行排序,也就是通常说的 filesort 排序,所有不是通过索引直接返回排序结果的排序都叫 FileSort 排序。


第二种通过有序索引顺序扫描直接返回有序数据,这种情况即为 using index,不需要额外排序,操作效率高。


3、Filesort 的优化


通过创建合适的索引,能够减少 Filesort 的出现,但是在某些情况下,条件限制不能让Filesort消失,那就需要加快 Filesort的排序操作。对于Filesort , MySQL 有两种排序算法:


1) 两次扫描算法 :MySQL4.1 之前,使用该方式排序。首先根据条件取出排序字段和行指针信息,然后在排序区 sort buffer 中排序,如果sort buffer不够,则在临时表 temporary table 中存储排序结果。完成排序之后,再根据行指针回表读取记录,该操作可能会导致大量随机I/O操作。


2)一次扫描算法:一次性取出满足条件的所有字段,然后在排序区 sort  buffer 中排序后直接输出结果集。排序时内存开销较大,但是排序效率比两次扫描算法要高。


MySQL 通过比较系统变量 max_length_for_sort_data 的大小和Query语句取出的字段总大小, 来判定是否那种排序算法,如果max_length_for_sort_data 更大,那么使用第二种优化之后的算法;否则使用第一种。


可以适当提高 sort_buffer_size  和 max_length_for_sort_data  系统变量,来增大排序区的大小,提高排序的效率。


优化group by

于GROUP BY 实际上也同样会进行排序操作,而且与ORDER BY 相比,GROUP BY 主要只是多了排序之后的分组操作。当然,如果在分组的时候还使用了其他的一些聚合函数,那么还需要一些聚合函数的计算。所以,在GROUP BY 的实现过程中,与 ORDER BY 一样也可以利用到索引。


如果查询包含 group by 但是用户想要避免排序结果的消耗, 则可以执行order by null 禁止排序。如下 :


drop index idx_emp_age_salary on emp; 
explain select age,count(*) from emp group by age;
explain select age,count(*) from emp group by age order by null;
create index idx_emp_age_salary on emp(age,salary);

子查询优化

使用子查询可以一次性的完成很多逻辑上需要多个步骤才能完成的SQL操作,同时也可以避免事务或者表锁死,并且写起来也很容易。但是,有些情况下,子查询是可以被更高效的连接(JOIN)替代。


explain select * from user where uid in (select uid from user_role );


image.png


explain select * from user u , user_role ur where u.uid = ur.uid;
system>const>eq_ref>ref>range>index>ALL


连接(Join)查询之所以更有效率一些 ,是因为MySQL不需要在内存中创建临时表来完成这个逻辑上需要两个步骤的查询工作。


limit优化

一般分页查询时,通过创建覆盖索引能够比较好地提高性能。一个常见又非常头疼的问题就是 limit 900000,10  ,此时需要MySQL排序前900010 记录,仅仅返回900000 - 900010 的记录,其他记录丢弃,查询排序的代价非常大 。


1、在索引上完成排序分页操作,最后根据主键关联回原表查询所需要的其他列内容。


2、该方案适用于主键自增的表,可以把Limit 查询转换成某个位置的查询 。


相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
8天前
|
关系型数据库 MySQL Linux
MySQL原理简介—6.简单的生产优化案例
本文介绍了数据库和存储系统的几个主题: 1. **MySQL日志的顺序写和数据文件的随机读指标**:解释了磁盘随机读和顺序写的原理及对数据库性能的影响。 2. **Linux存储系统软件层原理及IO调度优化原理**:解析了Linux存储系统的分层架构,包括VFS、Page Cache、IO调度等,并推荐使用deadline算法优化IO调度。 3. **数据库服务器使用的RAID存储架构**:介绍了RAID技术的基本概念及其如何通过多磁盘阵列提高存储容量和数据冗余性。 4. **数据库Too many connections故障定位**:分析了MySQL连接数限制问题的原因及解决方法。
|
11天前
|
SQL 关系型数据库 MySQL
MySQL进阶突击系列(07) 她气鼓鼓递来一条SQL | 怎么看执行计划、SQL怎么优化?
在日常研发工作当中,系统性能优化,从大的方面来看主要涉及基础平台优化、业务系统性能优化、数据库优化。面对数据库优化,除了DBA在集群性能、服务器调优需要投入精力,我们研发需要负责业务SQL执行优化。当业务数据量达到一定规模后,SQL执行效率可能就会出现瓶颈,影响系统业务响应。掌握如何判断SQL执行慢、以及如何分析SQL执行计划、优化SQL的技能,在工作中解决SQL性能问题显得非常关键。
|
2月前
|
SQL 关系型数据库 MySQL
深入解析MySQL的EXPLAIN:指标详解与索引优化
MySQL 中的 `EXPLAIN` 语句用于分析和优化 SQL 查询,帮助你了解查询优化器的执行计划。本文详细介绍了 `EXPLAIN` 输出的各项指标,如 `id`、`select_type`、`table`、`type`、`key` 等,并提供了如何利用这些指标优化索引结构和 SQL 语句的具体方法。通过实战案例,展示了如何通过创建合适索引和调整查询语句来提升查询性能。
346 9
|
3天前
|
缓存 算法 关系型数据库
MySQL底层概述—8.JOIN排序索引优化
本文主要介绍了MySQL中几种关键的优化技术和概念,包括Join算法原理、IN和EXISTS函数的使用场景、索引排序与额外排序(Using filesort)的区别及优化方法、以及单表和多表查询的索引优化策略。
MySQL底层概述—8.JOIN排序索引优化
|
4天前
|
SQL 关系型数据库 MySQL
MySQL底层概述—7.优化原则及慢查询
本文主要介绍了:Explain概述、Explain详解、索引优化数据准备、索引优化原则详解、慢查询设置与测试、慢查询SQL优化思路
MySQL底层概述—7.优化原则及慢查询
|
3月前
|
SQL 关系型数据库 MySQL
大厂面试官:聊下 MySQL 慢查询优化、索引优化?
MySQL慢查询优化、索引优化,是必知必备,大厂面试高频,本文深入详解,建议收藏。关注【mikechen的互联网架构】,10年+BAT架构经验分享。
大厂面试官:聊下 MySQL 慢查询优化、索引优化?
|
5天前
|
存储 缓存 关系型数据库
MySQL底层概述—5.InnoDB参数优化
本文介绍了MySQL数据库中与内存、日志和IO线程相关的参数优化,旨在提升数据库性能。主要内容包括: 1. 内存相关参数优化:缓冲池内存大小配置、配置多个Buffer Pool实例、Chunk大小配置、InnoDB缓存性能评估、Page管理相关参数、Change Buffer相关参数优化。 2. 日志相关参数优化:日志缓冲区配置、日志文件参数优化。 3. IO线程相关参数优化: 查询缓存参数、脏页刷盘参数、LRU链表参数、脏页刷盘相关参数。
MySQL底层概述—5.InnoDB参数优化
|
7天前
|
关系型数据库 MySQL 数据库
从MySQL优化到脑力健康:技术人与效率的双重提升
聊到效率这个事,大家应该都挺有感触的吧。 不管是技术优化还是个人状态调整,怎么能更快、更省力地完成事情,都是我们每天要琢磨的事。
56 23
|
6天前
|
SQL 关系型数据库 MySQL
MySQL原理简介—11.优化案例介绍
本文介绍了四个SQL性能优化案例,涵盖不同场景下的问题分析与解决方案: 1. 禁止或改写SQL避免自动半连接优化。 2. 指定索引避免按聚簇索引全表扫描大表。 3. 按聚簇索引扫描小表减少回表次数。 4. 避免产生长事务长时间执行。
|
23天前
|
监控 关系型数据库 MySQL
Aurora MySQL负载突增应对策略与优化方案
通过以上策略,企业可以有效应对 Aurora MySQL 的负载突增,确保数据库在高负载情况下依然保持高性能和稳定性。这些优化方案涵盖了从架构设计到具体配置和监控的各个方面,能够全面提升数据库的响应速度和处理能力。在实际应用中,应根据具体的业务需求和负载特征,灵活调整和应用这些优化策略。
50 22