OpenCV findContours函数

简介: OpenCV findContours函数

findContours()函数


函数功能


检测出物体的轮廓


函数原型


findContours(
  InputOutputArray image, 
  OutputArrayOfArrays contours, 
  OutputArray hierarchy, 
  int mode, 
  int method, 
  Point offset = Point()
);


参数说明


  • image:单通道图像矩阵,可以是灰度图,但更常用的是二值图像,一般是经过Canny、拉普拉斯等边缘检测算子处理过的二值图像;


  • contours:contours定义为“vector<vector> contours”,是一个双重向量(向量内每个元素保存了一组由连续的Point构成的点的集合的向量),每一组点集就是一个轮廓,有多少轮廓,contours就有多少元素;


  • hierarchy:hierarchy定义为“vector<Vec4i> hierarchy”,Vec4i的定义:typedef Vec<int, 4> Vec4i;(向量内每个元素都包含了4个int型变量),所以从定义上看,hierarchy是一个向量,向量内每个元素都是一个包含4个int型的数组。向量hierarchy内的元素和轮廓向量contours内的元素是一一对应的,向量的容量相同。hierarchy内每个元素的4个int型变量是hierarchy[i][0] ~ hierarchy[i][3],分别表示当前轮廓 i 的后一个轮廓、前一个轮廓、父轮廓和内嵌轮廓的编号索引。如果当前轮廓没有对应的后一个轮廓、前一个轮廓、父轮廓和内嵌轮廓,则相应的hierarchy[i][*]被置为-1。


  • mode:定义轮廓的检索模式,取值如下:


CV_RETR_EXTERNAL:只检测最外围轮廓,包含在外围轮廓内的内围轮廓被忽略;
CV_RETR_LIST:检测所有的轮廓,包括内围、外围轮廓,但是检测到的轮廓不建立等级关系,彼此之间独立,没有等级关系,这就意味着这个检索模式下不存在父轮廓或内嵌轮廓,所以hierarchy向量内所有元素的第3、第4个分量都会被置为-1,具体下文会讲到;
CV_RETR_CCOMP: 检测所有的轮廓,但所有轮廓只建立两个等级关系,外围为顶层,若外围内的内围轮廓还包含了其他的轮廓信息,则内围内的所有轮廓均归属于顶层;
CV_RETR_TREE: 检测所有轮廓,所有轮廓建立一个等级树结构。外层轮廓包含内层轮廓,内层轮廓还可以继续包含内嵌轮廓。


  • method:定义轮廓的近似方法,取值如下:


CV_CHAIN_APPROX_NONE:保存物体边界上所有连续的轮廓点到contours向量内;
CV_CHAIN_APPROX_SIMPLE:仅保存轮廓的拐点信息,把所有轮廓拐点处的点保存入contours向量内,拐点与拐点之间直线段上的信息点不予保留;
CV_CHAIN_APPROX_TC89_L1:使用teh-Chinl chain 近似算法;
CV_CHAIN_APPROX_TC89_KCOS:使用teh-Chinl chain 近似算法。


  • offset:Point偏移量,所有的轮廓信息相对于原始图像对应点的偏移量,相当于在每一个检测出的轮廓点上加上该偏移量,并且Point还可以是负值!


测试:mode与method取值问题


通过调整第四个参数mode——轮廓的检索模式、第五个参数method——轮廓的近似方式和不同的偏移量Point(),就可以得到不同效果。


检测最外层轮廓,并且保存轮廓上所有点


一、mode取值“CV_RETR_EXTERNAL”,method取值


“CV_CHAIN_APPROX_NONE”,即只检测最外层轮廓,并且保存轮廓上所有点:

轮廓:



只有最外层的轮廓被检测到,内层的轮廓被忽略


contours向量内所有点集:



保存了所有轮廓上的所有点,图像表现跟轮廓一致


hierarchy向量:



重温一下hierarchy向量————向量中每个元素的4个整形分别对应当前轮廓的后一个轮廓、前一个轮廓、父轮廓、内嵌轮廓的索引编号。


本次参数配置下,hierarchy向量内有3个元素,分别对应于3个轮廓。以第2个轮廓(对应向量内第1个元素)为例,


内容为[2,0,-1,-1], “2”表示当前轮廓的后一个轮廓的编号为2,“0”表示当前轮廓的前一个轮廓编号为0,其后2个“-1”表示为空,因为只有最外层轮廓这一个等级,所以不存在父轮廓和内嵌轮廓。


检测所有轮廓,但各轮廓之间彼此独立,不建立等级关系,并且仅保存轮廓上拐点信息


二、 mode取值“CV_RETR_LIST”,method取值“CV_CHAIN_APPROX_SIMPLE”,即检测所有轮廓,但各轮廓之间彼此独立,不建立等级关系,并且仅保存轮廓上拐点信息:



检测到的轮廓跟上文“一”中是一致的,不再显示。


contours向量内所有点集:



contours向量中所有的拐点信息得到了保留,但是拐点与拐点之间直线段的部分省略掉了。


hierarchy向量(截取一部分):



本次参数配置下,检测出了较多轮廓。第1、第2个整形值分别指向上一个和下一个轮廓编号,由于本次配置mode取值“RETR_LIST”,各轮廓间各自独立,不建立等级关系,所以第3、第4个整形参数为空,设为值-1。


检测所有轮廓,轮廓间建立外层、内层的等级关系,并且保存轮廓上所有点


三、mode取值“CV_RETR_TREE”,method取值“CV_CHAIN_APPROX_NONE”,即检测所有轮廓,轮廓间建立外层、内层的等级关系,并且保存轮廓上所有点。



contours向量内所有点集:



所有内外层轮廓都被检测到,contours点集组成的图形跟轮廓表现一致。


hierarchy向量(截取一部分)



本次参数配置要求检测所有轮廓,每个轮廓都被划分等级,最外围、第一内围、第二内围等等,所以除第1个最后一个轮廓外,其他轮廓都具有不为-1的第3、第4个整形参数,分别指向当前轮廓的父轮廓、内嵌轮廓索引编号。


Point()偏移量设置


使用三中的参数配置,设置偏移量Point为Point(45,30)。


此时轮廓图像为:




可以看到轮廓图像整体向右下角有一个偏转,偏转量就是设置的(45,30)。


这个偏移量的设置不能过大或过小(负方向上的过小),若图像上任一点加上该偏移量后超出图像边界,程序会内存溢出报错。



另外,绘制轮廓的函数drawContours中最后一个参数是一个Point类型的offset,这个offset跟findContours函数中的offset含义一致,设置之后所绘制的轮廓是原始轮廓上所有像素点加上该偏移量offset后的效果。


当所分析图像是另外一个图像的ROI的时候,这个offset偏移量就可以大显身手了。通过加减这个偏移量,就可以把ROI图像的检测结果投影到原始图像对应位置上。


相关文章
|
6月前
|
监控 API 计算机视觉
OpenCV这么简单为啥不学——1.3、图像缩放resize函数
OpenCV这么简单为啥不学——1.3、图像缩放resize函数
76 0
|
6月前
|
人工智能 Linux API
OpenCV这么简单为啥不学——1.1、图像处理(灰度图、模糊图片、GaussianBlur函数、提取边缘、边缘膨胀、边缘细化)
OpenCV这么简单为啥不学——1.1、图像处理(灰度图、模糊图片、GaussianBlur函数、提取边缘、边缘膨胀、边缘细化)
97 0
|
28天前
|
算法 计算机视觉
Opencv学习笔记(六):cv2.resize函数的介绍
这篇文章介绍了OpenCV库中cv2.resize函数的使用方法,包括其参数、插值方式选择以及实际代码示例。
178 1
Opencv学习笔记(六):cv2.resize函数的介绍
|
28天前
|
计算机视觉
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
这篇文章详细介绍了OpenCV库中的图像二值化函数`cv2.threshold`,包括二值化的概念、常见的阈值类型、函数的参数说明以及通过代码实例展示了如何应用该函数进行图像二值化处理,并展示了运行结果。
257 0
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
|
3月前
|
计算机视觉
OpenCV滑动条(createTrackbar()函数)如何在多个维度进行同步调整?
这篇文章介绍了如何在OpenCV中使用`createTrackbar()`函数创建多个滑动条以同步调整图像的多个维度(如亮度和对比度),通过将不同滑动条的回调函数合并为一个,确保它们在同一图像基础上进行调整。
|
5月前
|
存储 编解码 算法
【Qt&OpenCV 检测图像中的线/圆/轮廓 HoughLinesP/HoughCircles/findContours&drawContours】
【Qt&OpenCV 检测图像中的线/圆/轮廓 HoughLinesP/HoughCircles/findContours&drawContours】
85 0
|
4月前
|
机器学习/深度学习 XML 计算机视觉
OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习库,它提供了大量的函数和工具,用于处理图像和视频数据。
OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习库,它提供了大量的函数和工具,用于处理图像和视频数据。
|
6月前
|
监控 算法 Serverless
OpenCV这么简单为啥不学——1.12、使用ssim函数对两张照片进行相似度分析
OpenCV这么简单为啥不学——1.12、使用ssim函数对两张照片进行相似度分析
138 0
|
6月前
|
监控 API 计算机视觉
OpenCV这么简单为啥不学——1.6、图像旋转与翻转(rotate函数、imutils环境安装、imutils任意角度旋转)
OpenCV这么简单为啥不学——1.6、图像旋转与翻转(rotate函数、imutils环境安装、imutils任意角度旋转)
75 0
|
6月前
|
监控 API 计算机视觉
OpenCV这么简单为啥不学——1.4、基础标识绘制(绘制线line函数、rectangle函数绘制四边形、circle函数绘制圆形、putText函数绘制文字、putText绘制中文文字)
OpenCV这么简单为啥不学——1.4、基础标识绘制(绘制线line函数、rectangle函数绘制四边形、circle函数绘制圆形、putText函数绘制文字、putText绘制中文文字)
62 0