①机器学习分类算法之LightGBM(梯度提升框架)

简介: 机器学习分类算法之LightGBM(梯度提升框架)

走进LightGBM

什么是LightGBM?

在上一篇的文章里,我介绍了XGBoost算法,它是是很多的比赛的大杀器,但是在使用过程中,其训练耗时很长,内存占用比较大。


在2017年年1月微软在GitHub的上开源了LightGBM。该算法在不降低准确率的前提下,速度提升了10倍左右,占用内存下降了3倍左右。LightGBM是个快速的,分布式的,高性能的基于决策树算法的梯度提升算法。可用于排序,分类,回归以及很多其他的机器学习任务中。


GBDT (Gradient Boosting Decision Tree) 是机器学习中一个长盛不衰的模型,其主要思想是利用弱分类器(决策树)迭代训练以得到最优模型,该模型具有训练效果好、不易过拟合等优点。GBDT不仅在工业界应用广泛,通常被用于多分类、点击率预测、搜索排序等任务;在各种数据挖掘竞赛中也是致命武器,据统计Kaggle上的比赛有一半以上的冠军方案都是基于GBDT。


而LightGBM(Light Gradient Boosting Machine)是一个实现GBDT算法的框架,支持高效率的并行训练,并且具有更快的训练速度、更低的内存消耗、更好的准确率、支持分布式可以快速处理海量数据等优点。


LightGBM是一个梯度提升框架,使用基于树的学习算法。


常用的机器学习算法,例如神经网络等算法,都可以以mini-batch的方式训练,训练数据的大小不会受到内存限制。而GBDT在每一次迭代的时候,都需要遍历整个训练数据多次。如果把整个训练数据装进内存则会限制训练数据的大小;如果不装进内存,反复地读写训练数据又会消耗非常大的时间。尤其面对工业级海量的数据,普通的GBDT算法是不能满足其需求的。


LightGBM提出的主要原因就是为了解决GBDT在海量数据遇到的问题,让GBDT可以更好更快地用于工业实践。


XGBoost的缺点

在LightGBM提出之前,最有名的GBDT工具就是XGBoost了,它是基于预排序方法的决策树算法。这种构建决策树的算法基本思想是:首先,对所有特征都按照特征的数值进行预排序。其次,在遍历分割点的时候用O(#data)的代价找到一个特征上的最好分割点。最后,在找到一个特征的最好分割点后,将数据分裂成左右子节点。


这样的预排序算法的优点是能精确地找到分割点。但是缺点也很明显:首先,空间消耗大。这样的算法需要保存数据的特征值,还保存了特征排序的结果(例如,为了后续快速的计算分割点,保存了排序后的索引),这就需要消耗训练数据两倍的内存。其次,时间上也有较大的开销,在遍历每一个分割点的时候,都需要进行分裂增益的计算,消耗的代价大。最后,对cache优化不友好。在预排序后,特征对梯度的访问是一种随机访问,并且不同的特征访问的顺序不一样,无法对cache进行优化。同时,在每一层长树的时候,需要随机访问一个行索引到叶子索引的数组,并且不同特征访问的顺序也不一样,也会造成较大的cache miss。


LightGBM的优化

为了避免XGBoost的缺陷,并且能够在不损害准确率的条件下加快GBDT模型的训练速度,lightGBM在传统的GBDT算法上进行了如下优化:


基于Histogram的决策树算法。

单边梯度采样 Gradient-based One-Side Sampling(GOSS):使用GOSS可以减少大量只具有小梯度的数据实例,这样在计算信息增益的时候只利用剩下的具有高梯度的数据就可以了,相比XGBoost遍历所有特征值节省了不少时间和空间上的开销。

互斥特征捆绑 Exclusive Feature Bundling(EFB):使用EFB可以将许多互斥的特征绑定为一个特征,这样达到了降维的目的。

带深度限制的Leaf-wise的叶子生长策略:大多数GBDT工具使用低效的按层生长 (level-wise) 的决策树生长策略,因为它不加区分的对待同一层的叶子,带来了很多没必要的开销。实际上很多叶子的分裂增益较低,没必要进行搜索和分裂。LightGBM使用了带有深度限制的按叶子生长 (leaf-wise) 算法。

直接支持类别特征(Categorical Feature)

支持高效并行

Cache命中率优化

LightGBM的基本原理

LightGBM树的生长方式是垂直方向的,其他的算法都是水平方向的,也就是说Light GBM生长的是树的叶子,其他的算法生长的是树的层次。


LightGBM选择具有最大误差的树叶进行生长,当生长同样的树叶,生长叶子的算法可以比基于层的算法减少更多的loss。


下面的图解释了LightGBM和其他的提升算法的实现


在 Histogram 算法之上,LightGBM 进行进一步的优化。首先它抛弃了大多数 GBDT 工具使用的按层生长 (level-wise) 的决策树生长策略,而使用了带有深度限制的按叶子生长 (leaf-wise) 算法。Level-wise 过一次数据可以同时分裂同一层的叶子,容易进行多线程优化,也好控制模型复杂度,不容易过拟合。但实际上 Level-wise 是一种低效的算法,因为它不加区分的对待同一层的叶子,带来了很多没必要的开销,因为实际上很多叶子的分裂增益较低,没必要进行搜索和分裂。


image.png


Leaf-wise 则是一种更为高效的策略,每次从当前所有叶子中,找到分裂增益最大的一个叶子,然后分裂,如此循环。因此同 Level-wise 相比,在分裂次数相同的情况下,Leaf-wise 可以降低更多的误差,得到更好的精度。Leaf-wise 的缺点是可能会长出比较深的决策树,产生过拟合。因此 LightGBM 在 Leaf-wise 之上增加了一个最大深度的限制,在保证高效率的同时防止过拟合。


image.png



数据的数量每天都在增加,对于传统的数据科学算法来说,很难快速的给出结果。LightGBM的前缀‘Light’表示速度很快。LightGBM可以处理大量的数据,运行时占用很少的内存。另外一个理由,LightGBM为什么这么受欢迎是因为它把重点放在结果的准确率上。LightGBM还支持GPU学习,因此,数据科学家广泛的使用LightGBM来进行数据科学应用的部署。


既然可以提升速度,那么它可以在小数据集上面使用吗?


不可以!不建议在小数据集上使用LightGBM。LightGBM对过拟合很敏感,对于小数据集非常容易过拟合。对于多小属于小数据集,并没有什么阈值,但是从我的经验,我建议对于10000+以上的数据的时候,再使用LightGBM。这也很明显,因为小的数据集使用XGBoost就可以了呀。


实现LightGBM非常简单,复杂的是参数的调试。LightGBM有超过100个参数,但是不用担心,你不需要所有的都学。


Histogram 算法

直方图算法的基本思想是先把连续的浮点特征值离散化成k个整数,同时构造一个宽度为k的直方图。在遍历数据的时候,根据离散化后的值作为索引在直方图中累积统计量,当遍历一次数据后,直方图累积了需要的统计量,然后根据直方图的离散值,遍历寻找最优的分割点。


image.png


使用直方图算法有很多优点。首先,最明显就是内存消耗的降低,直方图算法不仅不需要额外存储预排序的结果,而且可以只保存特征离散化后的值,而这个值一般用 8 位整型存储就足够了,内存消耗可以降低为原来的1/8。 (内存消耗低)


image.png


然后在计算上的代价也大幅降低,预排序算法每遍历一个特征值就需要计算一次分裂的增益,而直方图算法只需要计算k次(k可以认为是常数),时间复杂度从O(#data*#feature)优化到O(k*#features)。


当然,Histogram 算法并不是完美的。由于特征被离散化后,找到的并不是很精确的分割点,所以会对结果产生影响。但在不同的数据集上的结果表明,离散化的分割点对最终的精度影响并不是很大,甚至有时候会更好一点。


直方图加速 

LightGBM 另一个优化是 Histogram(直方图)做差加速。一个容易观察到的现象:一个叶子的直方图可以由它的父亲节点的直方图与它兄弟的直方图做差得到。通常构造直方图,需要遍历该叶子上的所有数据,但直方图做差仅需遍历直方图的k个桶。利用这个方法,LightGBM 可以在构造一个叶子的直方图后,可以用非常微小的代价得到它兄弟叶子的直方图,在速度上可以提升一倍。


image.png

实际上大多数机器学习工具都无法直接支持类别特征,一般需要把类别特征,转化到多维的0/1 特征,降低了空间和时间的效率。而类别特征的使用是在实践中很常用的。基于这个考虑,LightGBM 优化了对类别特征的支持,可以直接输入类别特征,不需要额外的0/1 展开。并在决策树算法上增加了类别特征的决策规则。在 Expo 数据集上的实验,相比0/1 展开的方法,训练速度可以加速 8 倍,并且精度一致。据我们所知,LightGBM 是第一个直接支持类别特征的 GBDT 工具。


LightGBM 的单机版本还有很多其他细节上的优化,比如 cache 访问优化,多线程优化,稀疏特征优化等等。优化汇总如下:


LightGBM并行优化

LightGBM 还具有支持高效并行的优点。LightGBM 原生支持并行学习,目前支持特征并行和数据并行的两种。


   特征并行的主要思想是在不同机器在不同的特征集合上分别寻找最优的分割点,然后在机器间同步最优的分割点。

   数据并行则是让不同的机器先在本地构造直方图,然后进行全局的合并,最后在合并的直方图上面寻找最优分割点。


LightGBM 针对这两种并行方法都做了优化:


   在特征并行算法中,通过在本地保存全部数据避免对数据切分结果的通信;

   在数据并行中使用分散规约 (Reduce scatter) 把直方图合并的任务分摊到不同的机器,降低通信和计算,并利用直方图做差,进一步减少了一半的通信量。基于投票的数据并行则进一步优化数据并行中的通信代价,使通信代价变成常数级别。在数据量很大的时候,使用投票并行可以得到非常好的加速效果。


注意:


当生长相同的叶子时,Leaf-wise 比 level-wise 减少更多的损失。

高速,高效处理大数据,运行时需要更低的内存,支持 GPU

不要在少量数据上使用,会过拟合,建议 10,000+ 行记录时使用。


相关文章
|
7月前
|
数据采集 自动驾驶 Java
PAI-TurboX:面向自动驾驶的训练推理加速框架
PAI-TurboX 为自动驾驶场景中的复杂数据预处理、离线大规模模型训练和实时智能驾驶推理,提供了全方位的加速解决方案。PAI-Notebook Gallery 提供PAI-TurboX 一键启动的 Notebook 最佳实践
|
3月前
|
机器学习/深度学习 数据采集 人工智能
【机器学习算法篇】K-近邻算法
K近邻(KNN)是一种基于“物以类聚”思想的监督学习算法,通过计算样本间距离,选取最近K个邻居投票决定类别。支持多种距离度量,如欧式、曼哈顿、余弦相似度等,适用于分类与回归任务。结合Scikit-learn可高效实现,需合理选择K值并进行数据预处理,常用于鸢尾花分类等经典案例。(238字)
|
机器学习/深度学习 人工智能 算法
Post-Training on PAI (3):PAI-ChatLearn,PAI 自研高性能强化学习框架
人工智能平台 PAI 推出了高性能一体化强化学习框架 PAI-Chatlearn,从框架层面解决强化学习在计算性能和易用性方面的挑战。
|
8月前
|
机器学习/深度学习 人工智能 算法
PaperCoder:一种利用大型语言模型自动生成机器学习论文代码的框架
PaperCoder是一种基于多智能体LLM框架的工具,可自动将机器学习研究论文转化为代码库。它通过规划、分析和生成三个阶段,系统性地实现从论文到代码的转化,解决当前研究中代码缺失导致的可复现性问题。实验表明,PaperCoder在自动生成高质量代码方面显著优于基线方法,并获得专家高度认可。这一工具降低了验证研究成果的门槛,推动科研透明与高效。
708 19
PaperCoder:一种利用大型语言模型自动生成机器学习论文代码的框架
|
7月前
|
机器学习/深度学习 人工智能 分布式计算
Post-Training on PAI (1):一文览尽开源强化学习框架在PAI平台的应用
Post-Training(即模型后训练)作为大模型落地的重要一环,能显著优化模型性能,适配特定领域需求。相比于 Pre-Training(即模型预训练),Post-Training 阶段对计算资源和数据资源需求更小,更易迭代,因此备受推崇。近期,我们将体系化地分享基于阿里云人工智能平台 PAI 在强化学习、模型蒸馏、数据预处理、SFT等方向的技术实践,旨在清晰地展现 PAI 在 Post-Training 各个环节的产品能力和使用方法,欢迎大家随时交流探讨。
|
9月前
|
机器学习/深度学习 算法 数据挖掘
PyTabKit:比sklearn更强大的表格数据机器学习框架
PyTabKit是一个专为表格数据设计的新兴机器学习框架,集成了RealMLP等先进深度学习技术与优化的GBDT超参数配置。相比传统Scikit-Learn,PyTabKit通过元级调优的默认参数设置,在无需复杂超参调整的情况下,显著提升中大型数据集的性能表现。其简化API设计、高效训练速度和多模型集成能力,使其成为企业决策与竞赛建模的理想工具。
345 12
PyTabKit:比sklearn更强大的表格数据机器学习框架
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理
阿里云人工智能平台 PAI 开源 EasyDistill 框架助力大语言模型轻松瘦身
本文介绍了阿里云人工智能平台 PAI 推出的开源工具包 EasyDistill。随着大语言模型的复杂性和规模增长,它们面临计算需求和训练成本的障碍。知识蒸馏旨在不显著降低性能的前提下,将大模型转化为更小、更高效的版本以降低训练和推理成本。EasyDistill 框架简化了知识蒸馏过程,其具备多种功能模块,包括数据合成、基础和进阶蒸馏训练。通过数据合成,丰富训练集的多样性;基础和进阶蒸馏训练则涵盖黑盒和白盒知识转移策略、强化学习及偏好优化,从而提升小模型的性能。
|
8月前
|
机器学习/深度学习 数据采集 人工智能
20分钟掌握机器学习算法指南
在短短20分钟内,从零开始理解主流机器学习算法的工作原理,掌握算法选择策略,并建立对神经网络的直观认识。本文用通俗易懂的语言和生动的比喻,帮助你告别算法选择的困惑,轻松踏入AI的大门。
540 8
|
9月前
|
机器学习/深度学习 存储 Kubernetes
【重磅发布】AllData数据中台核心功能:机器学习算法平台
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
|
10月前
|
机器学习/深度学习 人工智能 自然语言处理
AI训练师入行指南(三):机器学习算法和模型架构选择
从淘金到雕琢,将原始数据炼成智能珠宝!本文带您走进数字珠宝工坊,用算法工具打磨数据金砂。从基础的经典算法到精密的深度学习模型,结合电商、医疗、金融等场景实战,手把手教您选择合适工具,打造价值连城的智能应用。掌握AutoML改装套件与模型蒸馏术,让复杂问题迎刃而解。握紧算法刻刀,为数字世界雕刻文明!
381 6

热门文章

最新文章