机器学习平台PAI智能标注之文本标注 Quick Start

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 智能标注(iTAG)是机器学习平台PAI上一款智能化数据标注平台,支持图像、文本、视频、音频等多种数据类型的标注以及多模态的混合标注。智能标注(iTAG)提供了丰富的标注内容组件和题目组件,您可以直接使用平台预置的标注模板,也可以根据自己的场景自定义模板进行数据标注。本文以文本标注为例快速演示该功能的使用,以供参考。

Step By Step

  • 1.创建oss bucket,上传预标注文本文件;文件demo参考
  • 2.创建数据集:用于数据标注
  • 3.创建标注任务
  • 4.处理标注任务
  • 5.导出标注结果数据

一.创建oss bucket,上传预标注文本文件

  • 为了便于测试,可以新建一个Bucket,之后将文本demo上传至新建Bucket中
  • :(1)下载的demo文件名称为方便阅读从prelabel_offline.manifest改为了alibaba.manifest
      (2)文件后缀和文件内容格式一定要符合要求,详见创建数据集

10ODYxODlELnBuZw==.png


二.创建数据集:用于数据标注

wLnBuZw==.png


UUzLnBuZw==.png

三.创建标注任务

  • 1.选择数据与模板配置

YyLnBuZw==.png


  • 2.调整预览配置

DM5LnBuZw==.png


  • 3.智能标注配置

RDRjMwLnBuZw==.png


  • 4.分发任务配置

QyRkUyLnBuZw==.png

四.处理标注任务

  • 前往标注页面

LnBuZw==.png


  • 领取标注任务

MUMxNzRBLnBuZw==.png

  • 打标、质检、验收

CNENGLnBuZw==.png


ENBOTgxLnBuZw==.png

五.导出标注结果数据

A3LnBuZw==.png


Tc1QjhDLnBuZw==.png


zOTEzLnBuZw==.png

更多参考

智能标注(iTAG)
阿里云机器学习平台PAI智能标注Quick Start

相关实践学习
使用PAI+LLaMA Factory微调Qwen2-VL模型,搭建文旅领域知识问答机器人
使用PAI和LLaMA Factory框架,基于全参方法微调 Qwen2-VL模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
相关文章
|
4月前
|
机器学习/深度学习 数据采集 人工智能
智能嗅探AJAX触发:机器学习在动态渲染中的创新应用
随着Web技术发展,动态加载数据的网站(如今日头条)对传统爬虫提出新挑战:初始HTML无完整数据、请求路径动态生成且易触发反爬策略。本文以爬取“AI”相关新闻为例,探讨了通过浏览器自动化、抓包分析和静态逆向接口等方法采集数据的局限性,并提出借助机器学习智能识别AJAX触发点的解决方案。通过特征提取与模型训练,爬虫可自动推测数据接口路径并高效采集。代码实现展示了如何模拟AJAX请求获取新闻标题、简介、作者和时间,并分类存储。未来,智能化将成为采集技术的发展趋势。
110 1
智能嗅探AJAX触发:机器学习在动态渲染中的创新应用
|
5月前
|
机器学习/深度学习 数据采集 存储
动态渲染页面智能嗅探:机器学习判定AJAX加载触发条件
本文介绍了一种基于机器学习的智能嗅探系统,用于自动判定动态渲染页面中AJAX加载的最佳触发时机。系统由请求分析、机器学习判定、数据采集和文件存储四大模块构成,采用爬虫代理技术实现高效IP切换,并通过模拟真实浏览器访问抓取微博热搜及评论数据。核心代码示例展示了如何调用微博接口获取榜单与评论,并利用预训练模型预测AJAX触发条件,最终将结果以JSON或CSV格式存储。该方案提升了动态页面加载效率,为信息采集与热点传播提供了技术支持。
101 15
动态渲染页面智能嗅探:机器学习判定AJAX加载触发条件
|
4月前
|
机器学习/深度学习 人工智能 算法
大数据与机器学习:数据驱动的智能时代
本文探讨了大数据与机器学习在数字化时代的融合及其深远影响。大数据作为“新时代的石油”,以其4V特性(体量、多样性、速度、真实性)为机器学习提供燃料,而机器学习通过监督、无监督、强化和深度学习等技术实现数据价值挖掘。两者协同效应显著,推动医疗、金融、零售、制造等行业创新。同时,文章分析了数据隐私、算法偏见、可解释性及能耗等挑战,并展望了边缘计算、联邦学习、AutoML等未来趋势。结语强调技术伦理与实际价值并重,倡导持续学习以把握智能时代机遇。
153 13
|
8月前
|
机器学习/深度学习 安全 持续交付
让补丁管理更智能:机器学习的革命性应用
让补丁管理更智能:机器学习的革命性应用
139 9
|
9月前
|
API Python
PAI EAS Flask应用部署Quick Start
本文介绍了如何将Python Flask应用快速部署到阿里云PAI EAS,并通过API对外提供服务。示例代码包括`web.py`和`demo.py`两个文件,展示了基本的Flask应用和跨文件导入功能。最后,通过阿里云控制台完成服务部署和调用。
286 28
|
8月前
|
机器学习/深度学习 边缘计算 运维
机器学习在网络安全中的防护:智能化的安全屏障
机器学习在网络安全中的防护:智能化的安全屏障
435 15
|
9月前
|
机器学习/深度学习 数据可视化 大数据
机器学习与大数据分析的结合:智能决策的新引擎
机器学习与大数据分析的结合:智能决策的新引擎
566 15
|
9月前
|
机器学习/深度学习 数据采集 运维
机器学习在运维中的实时分析应用:新时代的智能运维
机器学习在运维中的实时分析应用:新时代的智能运维
261 12
|
10月前
|
机器学习/深度学习 数据采集 运维
智能化运维:机器学习在故障预测和自动化响应中的应用
智能化运维:机器学习在故障预测和自动化响应中的应用
176 4
|
11月前
|
机器学习/深度学习 数据采集 运维
智能化运维:机器学习在故障预测和自动化响应中的应用
【10月更文挑战第1天】智能化运维:机器学习在故障预测和自动化响应中的应用
159 3

热门文章

最新文章