淘宝iOS扫一扫架构升级 - 设计模式的应用

简介: 本文在“扫一扫功能的不断迭代,基于设计模式的基本原则,逐步采用设计模式思想进行代码和架构优化”的背景下,对设计模式在扫一扫中新的应用进行了总结。

背景

扫一扫是淘宝镜头页中的一个重要组成,功能运行久远,其历史代码中较少采用面向对象编程思想,而较多采用面向过程的程序设计。
随着扫一扫功能的不断迭代,我们基于设计模式的基本原则,逐步采用设计模式思想进行代码和架构优化。本文就是在这个背景下,对设计模式在扫一扫中新的应用进行了总结。

扫一扫原架构


扫一扫的原架构如图所示。其中逻辑&展现层的功能逻辑很多,并没有良好的设计和拆分,举几个例子:

  1. 所有码的处理逻辑都写在同一个方法体里,一个方法就接近 2000 多行。
  2. 庞大的码处理逻辑写在 viewController 中,与 UI 逻辑耦合。


按照现有的代码设计,若要对某种码逻辑进行修改,都必须将所有逻辑全量编译。如果继续沿用此代码,扫一扫的可维护性会越来越低。

640.jpg

因此我们需要对代码和架构进行优化,在这里优化遵循的思路是:


  1. 了解业务能力
  2. 了解原有代码逻辑,不确定的地方通过埋点等方式线上验证
  3. 对原有代码功能进行重写/重构
  4. 编写单元测试,提供测试用例
  5. 测试&上线


扫码能力综述

扫一扫的解码能力决定了扫一扫能够处理的码类型,这里称为一级分类。基于一级分类,扫一扫会根据码的内容和类型,再进行二级分类。之后的逻辑,就是针对不同的二级类型,做相应的处理,如下图为技术链路流程。

640 (1).jpg

设计模式

 责任链模式

640.png

上述技术链路流程中,码处理流程对应的就是原有的 viewController 里面的巨无霸逻辑。通过梳理我们看到,码处理其实是一条链式的处理,且有前后依赖关系。优化方案有两个,方案一是拆解成多个方法顺序调用;方案二是参考苹果的 NSOperation 独立计算单元的思路,拆解成多个码处理单元。方案一本质还是没解决开闭原则(对扩展开放,对修改封闭)问的题。方案二是一个比较好的实践方式。那么怎么设计一个简单的结构来实现此逻辑呢?


码处理链路的特点是,链式处理,可控制处理的顺序,每个码处理单元都是单一职责,因此这里引出改造第一步:责任链模式。


责任链模式是一种行为设计模式, 它将请求沿着处理者链进行发送。收到请求后, 每个处理者均可对请求进行处理, 或将其传递给链上的下个处理者。
本文设计的责任链模式,包含三部分:

  1. 创建数据的 Creator
  2. 管理处理单元的 Manager
  3. 处理单元 Pipeline

三者结构如图所示

640 (1).png

  • 创建数据的 Creator


包含的功能和特点:

  1. 因为数据是基于业务的,所以它只被声明为一个 Protocol ,由上层实现。
  2. Creator 对数据做对象化,对象生成后 self.generateDataBlock(obj, Id) 即开始执行


API 代码示例如下

/// 数据产生协议 <CreatorProtocol>
@protocol TBPipelineDataCreatorDelegate <NSObject>
@property (nonatomic, copy) void(^generateDataBlock)(id data, NSInteger dataId);
@end

上层业务代码示例如下

@implementation TBDataCreator
@synthesize generateDataBlock;
- (void)receiveEventWithScanResult:(TBScanResult *)scanResult
                     eventDelegate:(id <TBScanPipelineEventDeletate>)delegate {
    //对数据做对象化                
    TBCodeData *data = [TBCodeData new];
    data.scanResult = scanResult;
    data.delegate = delegate;
    NSInteger dataId = 100;
    //开始执行递归
    self.generateDataBlock(data, dataId);
}
@end
  • 管理处理单元的 Manager


包含的功能和特点:

  1. 管理创建数据的 Creator
  2. 管理处理单元的 Pipeline
  3. 采用支持链式的点语法,方便书写


API 代码示例如下

@interface TBPipelineManager : NSObject
/// 添加创建数据 Creator
- (TBPipelineManager *(^)(id<TBPipelineDataCreatorDelegate> dataCreator))addDataCreator;
/// 添加处理单元 Pipeline
- (TBPipelineManager *(^)(id<TBPipelineDelegate> pipeline))addPipeline;
/// 抛出经过一系列 Pipeline 的数据。当 Creator 开始调用 generateDataBlock 后,Pipeline 就开始执行
@property (nonatomic, strong) void(^throwDataBlock)(id data);
@end

实现代码示例如下

@implementation TBPipelineManager
- (TBPipelineManager *(^)(id<TBPipelineDataCreatorDelegate> dataCreator))addDataCreator {
    @weakify
    return ^(id<TBPipelineDataCreatorDelegate> dataCreator) {
        @strongify
        if (dataCreator) {
            [self.dataGenArr addObject:dataCreator];
        }
        return self;
    };
}
- (TBPipelineManager *(^)(id<TBPipelineDelegate> pipeline))addPipeline {
    @weakify
    return ^(id<TBPipelineDelegate> pipeline) {
        @strongify
        if (pipeline) {
            [self.pipelineArr addObject:pipeline];
            //每一次add的同时,我们做链式标记(通过runtime给每个处理加Next)
            if (self.pCurPipeline) {
                NSObject *cur = (NSObject *)self.pCurPipeline;
                cur.tb_nextPipeline = pipeline;
            }
            self.pCurPipeline = pipeline;
        }
        return self;
    };
}
- (void)setThrowDataBlock:(void (^)(id _Nonnull))throwDataBlock {
    _throwDataBlock = throwDataBlock;
    @weakify
    //Creator的数组,依次对 Block 回调进行赋值,当业务方调用此 Block 时,就是开始处理数据的时候
    [self.dataGenArr enumerateObjectsUsingBlock:^(id<TBPipelineDataCreatorDelegate>  _Nonnull obj, NSUInteger idx, BOOL * _Nonnull stop) {
        obj.generateDataBlock = ^(id<TBPipelineBaseDataProtocol> data, NSInteger dataId) {
            @strongify
            data.dataId = dataId;
            //开始递归处理数据
            [self handleData:data];
        };
    }];
}
- (void)handleData:(id)data {
    [self recurPipeline:self.pipelineArr.firstObject data:data];
}
- (void)recurPipeline:(id<TBPipelineDelegate>)pipeline data:(id)data {
    if (!pipeline) {
        return;
    }
    //递归让pipeline处理数据
    @weakify
    [pipeline receiveData:data throwDataBlock:^(id  _Nonnull throwData) {
        @strongify
        NSObject *cur = (NSObject *)pipeline;
        if (cur.tb_nextPipeline) {
            [self recurPipeline:cur.tb_nextPipeline data:throwData];
        } else {
            !self.throwDataBlock?:self.throwDataBlock(throwData);
        }
    }];
}
@end
  • 处理单元 Pipeline


包含的功能和特点:

  1. 因为数据是基于业务的,所以它只被声明为一个 Protocol ,由上层实现。


API 代码示例如下

@protocol TBPipelineDelegate <NSObject>
//如果有错误,直接抛出
- (void)receiveData:(id)data throwDataBlock:(void(^)(id data))block;
@end

上层业务代码示例如下

//以A类型码码处理单元为例
@implementation TBGen3Pipeline
- (void)receiveData:(id <TBCodeDataDelegate>)data throwDataBlock:(void (^)(id data))block {
    TBScanResult *result = data.scanResult;
    NSString *scanType = result.resultType;
    NSString *scanData = result.data;
    if ([scanType isEqualToString:TBScanResultTypeA]) {
        //跳转逻辑
        ...
        //可以处理,终止递归
        BlockInPipeline();
    } else {
        //不满足处理条件,继续递归:由下一个 Pipeline 继续处理
        PassNextPipeline(data);
    }
}
@end
  • 业务层调用


有了上述的框架和上层实现,生成一个码处理管理就很容易且能达到解耦的目的,代码示例如下

- (void)setupPipeline {
    //创建 manager 和 creator
    self.manager = TBPipelineManager.new;
    self.dataCreator = TBDataCreator.new;
    //创建 pipeline
    TBCodeTypeAPipelie *codeTypeAPipeline = TBCodeTypeAPipelie.new;
    TBCodeTypeBPipelie *codeTypeBPipeline = TBCodeTypeBPipelie.new;
    //...
    TBCodeTypeFPipelie *codeTypeFPipeline = TBCodeTypeFPipelie.new;
    //往 manager 中链式添加 creator 和 pipeline
    @weakify
    self.manager
    .addDataCreator(self.dataCreator)
    .addPipeline(codeTypeAPipeline)
    .addPipeline(codeTypeBPipeline) 
    .addPipeline(codeTypeFPipeline) 
    .throwDataBlock = ^(id data) {
        @strongify
        if ([self.proxyImpl respondsToSelector:@selector(scanResultDidFailedProcess:)]) {
            [self.proxyImpl scanResultDidFailedProcess:data];
        }
    };
}

状态模式

640 (2).png

640 (3).png回头来看下码展示的逻辑,这是我们用户体验优化的重要一项内容。码展示的意思是对于当前帧/图片,识别到的码位置,我们进行锚点的高亮并跳转。这里包含三种情况:

  1. 未识别到码的时候,无锚点展示
  2. 识别到单码的时候,展示锚点并在指定时间后跳转
  3. 识别到多码额时候,展示锚点并等待用户点击


可以看到,这里涉及到简单的展示状态切换,这里就引出改造的第二步:状态模式

640 (4).png

状态模式是一种行为设计模式, 能在一个对象的内部状态变化时改变其行为, 使其看上去就像改变了自身所属的类一样。


本文设计的状态模式,包含两部分:

  1. 状态的信息 StateInfo
  2. 状态的基类 BaseState


两者结构如图所示

640 (5).png

 状态的信息 StateInfo


包含的功能和特点:

  1. 当前上下文仅有一种状态信息流转
  2. 业务方可以保存多个状态键值对,状态根据需要执行相应的代码逻辑。


状态信息的声明和实现代码示例如下

@interface TBBaseStateInfo : NSObject {
    @private
    TBBaseState<TBBaseStateDelegate> *_currentState; //记录当前的 State
}
//使用当前的 State 执行
- (void)performAction;
//更新当前的 State
- (void)setState:(TBBaseState <TBBaseStateDelegate> *)state;
//获取当前的 State
- (TBBaseState<TBBaseStateDelegate> *)getState;
@end
@implementation TBBaseStateInfo
- (void)performAction {
    //当前状态开始执行
    [_currentState perfromAction:self];
}
- (void)setState:(TBBaseState <TBBaseStateDelegate> *)state {
    _currentState = state;
}
- (TBBaseState<TBBaseStateDelegate> *)getState {
    return _currentState;
}
@end

上层业务代码示例如下

typedef NS_ENUM(NSInteger, TBStateType) {
    TBStateTypeNormal, //空状态
    TBStateTypeSingleCode, //单码展示态
    TBStateTypeMultiCode, //多码展示态
};
@interface TBStateInfo : TBBaseStateInfo
//以 key-value 的方式存储业务 type 和对应的状态 state
- (void)setState:(TBBaseState<TBBaseStateDelegate> *)state forType:(TBStateType)type;
//更新 type,并执行 state
- (void)setType:(TBStateType)type;
@end
@implementation TBStateInfo
- (void)setState:(TBBaseState<TBBaseStateDelegate> *)state forType:(TBStateType)type {
    [self.stateDict tb_setObject:state forKey:@(type)];
}
- (void)setType:(TBStateType)type {
    id oldState = [self getState];
    //找到当前能响应的状态
    id newState = [self.stateDict objectForKey:@(type)];
    //如果状态未发生变更则忽略
    if (oldState == newState)
        return;
    if ([newState respondsToSelector:@selector(perfromAction:)]) {
        [self setState:newState];
        //转态基于当前的状态信息开始执行
        [newState perfromAction:self];
    }
}
@end

 状态的基类 BaseState


包含的功能和特点:

  1. 定义了状态的基类
  2. 声明了状态的基类需要遵循的 Protocol


Protocol 如下,基类为空实现,子类继承后,实现对 StateInfo 的处理

@protocol TBBaseStateDelegate <NSObject>
- (void)perfromAction:(TBBaseStateInfo *)stateInfo;
@end

上层(以单码 State 为例)代码示例如下

@interface TBSingleCodeState : TBBaseState
@end
@implementation TBSingleCodeState
//实现 Protocol
- (void)perfromAction:(TBStateInfo *)stateAction {
    //业务逻辑处理 Start
    ...
    //业务逻辑处理 End
}
@end

 业务层调用


以下代码生成一系列状态,在合适时候进行状态的切换。

//状态初始化
- (void)setupState {
    TBSingleCodeState *singleCodeState = TBSingleCodeState.new; //单码状态
    TBNormalState *normalState = TBNormalState.new; //正常状态
    TBMultiCodeState *multiCodeState = [self getMultiCodeState]; //多码状态
    [self.stateInfo setState:normalState forType:TBStateTypeNormal];
    [self.stateInfo setState:singleCodeState forType:TBStateTypeSingleCode];
    [self.stateInfo setState:multiCodeState forType:TBStateTypeMultiCode];
}
//切换常规状态
- (void)processorA {
    //...
    [self.stateInfo setType:TBStateTypeNormal];
    //...
}
//切换多码状态
- (void)processorB {
    //...
    [self.stateInfo setType:TBStateTypeMultiCode];
    //...
}
//切换单码状态
- (void)processorC {
    //...
    [self.stateInfo setType:TBStateTypeSingleCode];
    //...
}


最好根据状态机图编写状态切换代码,以保证每种状态都有对应的流转。


次态→
初态↓

状态A

状态B

状态C

状态A

条件A

...

...

状态B

...

...

...

状态C

...

...

...

代理模式640 (6).png

在开发过程中,我们会在越来越多的地方使用到上图能力,比如「淘宝拍照」的相册中、「扫一扫」的相册中,用到解码码展示码处理的能力。


因此,我们需要把这些能力封装并做成插件化,以便在任何地方都能够使用。这里就引出了我们改造的第三步:代理模式。


代理模式是一种结构型设计模式,能够提供对象的替代品或其占位符。代理控制着对于原对象的访问, 并允许在将请求提交给对象前后进行一些处理。

本文设计的状态模式,包含两部分:

  1. 代理单例 GlobalProxy
  2. 代理的管理 ProxyHandler


两者结构如图所示


640 (7).png

 代理单例 GlobalProxy


单例的目的主要是减少代理重复初始化,可以在合适的时机初始化以及清空保存的内容。单例模式对于 iOSer 再熟悉不过了,这里不再赘述。


 代理的管理 Handler


维护一个对象,提供了对代理增删改查的能力,实现对代理的操作。这里实现 Key - Value 的 Key 为 Protocol ,Value 为具体的代理。


代码示例如下

+ (void)registerProxy:(id)proxy withProtocol:(Protocol *)protocol {
    if (![proxy conformsToProtocol:protocol]) {
        NSLog(@"#TBGlobalProxy, error");
        return;
    }
    if (proxy) {
        [[TBGlobalProxy sharedInstance].proxyDict setObject:proxy forKey:NSStringFromProtocol(protocol)];
    }
}
+ (id)proxyForProtocol:(Protocol *)protocol {
    if (!protocol) {
        return nil;
    }
    id proxy = [[TBGlobalProxy sharedInstance].proxyDict objectForKey:NSStringFromProtocol(protocol)];
    return proxy;
}
+ (NSDictionary *)proxyConfigs {
    return [TBGlobalProxy sharedInstance].proxyDict;
}
+ (void)removeAll {
    [TBGlobalProxy sharedInstance].proxyDict = [[NSMutableDictionary alloc] init];
}


 业务层的调用


所以不管是什么业务方,只要是需要用到对应能力的地方,只需要从单例中读取 Proxy, 实现该 Proxy 对应的 Protocol, 如一些回调、获取当前上下文等内容,就能够获取该 Proxy 的能力。

//读取 Proxy 的示例
- (id <TBScanProtocol>)scanProxy {
    if (!_scanProxy) {
        _scanProxy = [TBGlobalProxy proxyForProtocol:@protocol(TBScanProtocol)];
    }
    _scanProxy.proxyImpl = self;
    return _scanProxy;
}
//写入 Proxy 的示例(解耦调用)
- (void)registerGlobalProxy {
    //码处理能力
    [TBGlobalProxy registerProxy:[[NSClassFromString(@"TBScanProxy") alloc] init]
                    withProtocol:@protocol(TBScanProtocol)];
    //解码能力
    [TBGlobalProxy registerProxy:[[NSClassFromString(@"TBDecodeProxy") alloc] init]
                    withProtocol:@protocol(TBDecodeProtocol)];

扫一扫新架构

基于上述的改造优化,我们将原扫一扫架构进行了优化:将逻辑&展现层进行代码分拆,分为展现层逻辑层接口层。以达到层次分明、职责清晰、解耦的目的。

640 (8).png

总结

上述沉淀的三个设计模式作为扫拍业务的 Foundation 的  Public 能力,应用在镜头页的业务逻辑中。
通过此次重构,提高了扫码能力的复用性,结构和逻辑的清晰带来的是维护成本的降低,不用再大海捞针从代码“巨无霸”中寻找问题,降低了开发人日。

相关文章
|
22天前
|
运维 Cloud Native 持续交付
深入理解云原生架构及其在现代企业中的应用
随着数字化转型的浪潮席卷全球,企业正面临着前所未有的挑战与机遇。云计算技术的迅猛发展,特别是云原生架构的兴起,正在重塑企业的IT基础设施和软件开发模式。本文将深入探讨云原生的核心概念、关键技术以及如何在企业中实施云原生策略,以实现更高效的资源利用和更快的市场响应速度。通过分析云原生架构的优势和面临的挑战,我们将揭示它如何助力企业在激烈的市场竞争中保持领先地位。
|
15天前
|
机器学习/深度学习 编解码 人工智能
超越Transformer,全面升级!MIT等华人团队发布通用时序TimeMixer++架构,8项任务全面领先
一支由麻省理工学院、香港科技大学(广州)、浙江大学和格里菲斯大学的华人研究团队,开发了名为TimeMixer++的时间序列分析模型。该模型在8项任务中超越现有技术,通过多尺度时间图像转换、双轴注意力机制和多尺度多分辨率混合等技术,实现了性能的显著提升。论文已发布于arXiv。
135 83
|
27天前
|
Cloud Native 安全 持续交付
深入理解微服务架构及其在现代软件开发中的应用
深入理解微服务架构及其在现代软件开发中的应用
43 3
|
28天前
|
监控 持续交付 API
深入理解微服务架构及其在现代应用开发中的应用
深入理解微服务架构及其在现代应用开发中的应用
28 4
|
27天前
|
运维 Kubernetes Docker
深入理解容器化技术及其在微服务架构中的应用
深入理解容器化技术及其在微服务架构中的应用
57 1
|
20天前
|
开发工具 Android开发 iOS开发
Android与iOS生态差异深度剖析:技术架构、开发体验与市场影响####
本文旨在深入探讨Android与iOS两大移动操作系统在技术架构、开发环境及市场表现上的核心差异,为开发者和技术爱好者提供全面的视角。通过对比分析,揭示两者如何塑造了当今多样化的移动应用生态,并对未来发展趋势进行了展望。 ####
|
29天前
|
边缘计算 监控 自动驾驶
揭秘云计算中的边缘计算:架构、优势及应用场景
揭秘云计算中的边缘计算:架构、优势及应用场景
|
1月前
|
开发框架 前端开发 Android开发
安卓与iOS开发中的跨平台策略
在移动应用开发的战场上,安卓和iOS两大阵营各据一方。随着技术的演进,跨平台开发框架成为开发者的新宠,旨在实现一次编码、多平台部署的梦想。本文将探讨跨平台开发的优势与挑战,并分享实用的开发技巧,帮助开发者在安卓和iOS的世界中游刃有余。
|
10天前
|
iOS开发 开发者 MacOS
深入探索iOS开发中的SwiftUI框架
【10月更文挑战第21天】 本文将带领读者深入了解Apple最新推出的SwiftUI框架,这一革命性的用户界面构建工具为iOS开发者提供了一种声明式、高效且直观的方式来创建复杂的用户界面。通过分析SwiftUI的核心概念、主要特性以及在实际项目中的应用示例,我们将展示如何利用SwiftUI简化UI代码,提高开发效率,并保持应用程序的高性能和响应性。无论你是iOS开发的新手还是有经验的开发者,本文都将为你提供宝贵的见解和实用的指导。
95 66
|
20天前
|
开发框架 Android开发 iOS开发
安卓与iOS开发中的跨平台策略:一次编码,多平台部署
在移动应用开发的广阔天地中,安卓和iOS两大阵营各占一方。随着技术的发展,跨平台开发框架应运而生,它们承诺着“一次编码,到处运行”的便捷。本文将深入探讨跨平台开发的现状、挑战以及未来趋势,同时通过代码示例揭示跨平台工具的实际运用。

热门文章

最新文章