线程安全问题演示
我们创建一个变量 number 等于 0,之后创建线程 1,执行 100 万次 ++ 操作,同时再创建线程 2 执行 100 万次 – 操作,等线程 1 和线程 2 都执行完之后,打印 number 变量的值,如果打印的结果为 0,则说明是线程安全的,否则则为非线程安全的,示例代码如下:
public class ThreadSafeTest { // 全局变量 private static int number = 0; // 循环次数(100W) private static final int COUNT = 1_000_000; public static void main(String[] args) throws InterruptedException { // 线程1:执行 100W 次 ++ 操作 Thread t1 = new Thread(() -> { for (int i = 0; i < COUNT; i++) { number++; } }); t1.start(); // 线程2:执行 100W 次 -- 操作 Thread t2 = new Thread(() -> { for (int i = 0; i < COUNT; i++) { number--; } }); t2.start(); // 等待线程 1 和线程 2,执行完,打印 number 最终的结果 t1.join(); t2.join(); System.out.println("number 最终结果:" + number); } }
以上程序的执行结果如下图所示:
从上述执行结果可以看出,number 变量最终的结果并不是 0,和预期的正确结果不相符,这就是多线程中的线程安全问题。
解决线程安全问题
1.原子类AtomicInteger
AtomicInteger 是线程安全的类,使用它可以将 ++ 操作和 – 操作,变成一个原子性操作,这样就能解决非线程安全的问题了,如下代码所示:
import java.util.concurrent.atomic.AtomicInteger; public class AtomicIntegerExample { // 创建 AtomicInteger private static AtomicInteger number = new AtomicInteger(0); // 循环次数 private static final int COUNT = 1_000_000; public static void main(String[] args) throws InterruptedException { // 线程1:执行 100W 次 ++ 操作 Thread t1 = new Thread(() -> { for (int i = 0; i < COUNT; i++) { // ++ 操作 number.incrementAndGet(); } }); t1.start(); // 线程2:执行 100W 次 -- 操作 Thread t2 = new Thread(() -> { for (int i = 0; i < COUNT; i++) { // -- 操作 number.decrementAndGet(); } }); t2.start(); // 等待线程 1 和线程 2,执行完,打印 number 最终的结果 t1.join(); t2.join(); System.out.println("最终结果:" + number.get()); } }
以上程序的执行结果如下图所示:
2.加锁排队执行
Java 中有两种锁:synchronized 同步锁和 ReentrantLock 可重入锁。
2.1 同步锁synchronized
synchronized 是 JVM 层面实现的自动加锁和自动释放锁的同步锁,它的实现代码如下:
public class SynchronizedExample { // 全局变量 private static int number = 0; // 循环次数(100W) private static final int COUNT = 1_000_000; public static void main(String[] args) throws InterruptedException { // 线程1:执行 100W 次 ++ 操作 Thread t1 = new Thread(() -> { for (int i = 0; i < COUNT; i++) { // 加锁排队执行 synchronized (SynchronizedExample.class) { number++; } } }); t1.start(); // 线程2:执行 100W 次 -- 操作 Thread t2 = new Thread(() -> { for (int i = 0; i < COUNT; i++) { // 加锁排队执行 synchronized (SynchronizedExample.class) { number--; } } }); t2.start(); // 等待线程 1 和线程 2,执行完,打印 number 最终的结果 t1.join(); t2.join(); System.out.println("number 最终结果:" + number); } }
以上程序的执行结果如下图所示:
2.2 可重入锁ReentrantLock
ReentrantLock 可重入锁需要程序员自己加锁和释放锁,它的实现代码如下:
import java.util.concurrent.locks.ReentrantLock; /** * 使用 ReentrantLock 解决非线程安全问题 */ public class ReentrantLockExample { // 全局变量 private static int number = 0; // 循环次数(100W) private static final int COUNT = 1_000_000; // 创建 ReentrantLock private static ReentrantLock lock = new ReentrantLock(); public static void main(String[] args) throws InterruptedException { // 线程1:执行 100W 次 ++ 操作 Thread t1 = new Thread(() -> { for (int i = 0; i < COUNT; i++) { lock.lock(); // 手动加锁 number++; // ++ 操作 lock.unlock(); // 手动释放锁 } }); t1.start(); // 线程2:执行 100W 次 -- 操作 Thread t2 = new Thread(() -> { for (int i = 0; i < COUNT; i++) { lock.lock(); // 手动加锁 number--; // -- 操作 lock.unlock(); // 手动释放锁 } }); t2.start(); // 等待线程 1 和线程 2,执行完,打印 number 最终的结果 t1.join(); t2.join(); System.out.println("number 最终结果:" + number); } }
以上程序的执行结果如下图所示:
3.线程本地变量ThreadLocal
使用 ThreadLocal 线程本地变量也可以解决线程安全问题,它是给每个线程独自创建了一份属于自己的私有变量,不同的线程操作的是不同的变量,所以也不会存在非线程安全的问题,它的实现代码如下:
public class ThreadSafeExample { // 创建 ThreadLocal(设置每个线程中的初始值为 0) private static ThreadLocal<Integer> threadLocal = ThreadLocal.withInitial(() -> 0); // 全局变量 private static int number = 0; // 循环次数(100W) private static final int COUNT = 1_000_000; public static void main(String[] args) throws InterruptedException { // 线程1:执行 100W 次 ++ 操作 Thread t1 = new Thread(() -> { try { for (int i = 0; i < COUNT; i++) { // ++ 操作 threadLocal.set(threadLocal.get() + 1); } // 将 ThreadLocal 中的值进行累加 number += threadLocal.get(); } finally { threadLocal.remove(); // 清除资源,防止内存溢出 } }); t1.start(); // 线程2:执行 100W 次 -- 操作 Thread t2 = new Thread(() -> { try { for (int i = 0; i < COUNT; i++) { // -- 操作 threadLocal.set(threadLocal.get() - 1); } // 将 ThreadLocal 中的值进行累加 number += threadLocal.get(); } finally { threadLocal.remove(); // 清除资源,防止内存溢出 } }); t2.start(); // 等待线程 1 和线程 2,执行完,打印 number 最终的结果 t1.join(); t2.join(); System.out.println("最终结果:" + number); } }
以上程序的执行结果如下图所示:
小结
在 Java 中,解决线程安全问题的手段有 3 种:
1.使用线程安全的类,如 AtomicInteger 类;
2.使用锁 synchronized 或 ReentrantLock 加锁排队执行;
3.使用线程本地变量 ThreadLocal 来处理。
总结
如果这篇文章对您有所帮助,或者有所启发的话,求一键三连:点赞、转发、在看,您的支持是我坚持写作最大的动力。