🍀复制算法
复制算法将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。
☘️如果没有 survior 区会怎么样?
如果没有 Survivor,Eden 区每进行一次 Minor GC,存活的对象就会被送到老年代。老年代很快被填满,触发 Full GC。
老年代的内存空间远大于新生代,进行一次Full GC 消耗的时间比 Minor GC 长得多。你也许会问,执行时间长有什么坏处?频发的 Full GC 消耗的时间是非常可观的,这一点会影响大型程序的执行和响应速度,更不要说某些连接会因为超时发生连接错误了。
☘️结论
Survivor 的存在意义,就是减少被送到老年代的对象,进而减少 Full GC 的发生,Survivor 的预筛选保证,只有经历 16 次 Minor GC 还能在新生代中存活的对象,才会被送到老年代。
☘️为什么有一个 survior 区不可以?
假设现在只有一个 survivor 区,我们来模拟一下流程:
刚刚新建的对象在 Eden 中,一旦 Eden 满了,触发一次 Minor GC,Eden中的存活对象就会被移动到 Survivor 区。这样继续循环下去,下一次 Eden 满了的时候,问题来了,此时进行 Minor GC,Eden 和 Survivor 各有一些存活对象,如果此时把 Eden 区的存活对象硬放到 Survivor 区,很明显这两部分对象所占有的内存是不连续的,也就导致了内存碎片化。
这里解释一下为什么会导致内存碎片化,按道理来说,只要每次将 Eden 区存活的对象按顺序跟在 survivor 区后面就好了呀,survivor 区也没有内存碎片。
其实不是这样的,第二次垃圾回收时,会先回收 Eden 和 survivor 两个区:具体过程先将 eden 区存活对象放在 survivor 区,然后回收掉两个区的对象,回收之后 survivor 区就会出现内存碎片
因为 survivor 区对象不会按顺序 si 掉,复制的时候 si 的对象也占空间,所以复制算法回收完,survivor 有碎片空间。
☘️两个 survivor 区的回收流程
刚刚新建的对象在 eden 中,经历一次 Minor GC,eden 中的存活对象就会被移动到第一块 survivor S0,eden 被清空;
等 eden 区再满了,就再触发一次 Minor GC,eden 和 S0 中的存活对象又会被复制送入第二块 survivor space S1(这个过程非常重要,因为这种复制算法保证了 S1 中来自 S0 和 eden 两部分的存活对象按顺序放置,占用连续的内存空间,避免了碎片化的发生),然后 S0 和 eden 被清空,
继续往 eden 区里放新生对象,eden 再满之后,S0 与 S1 交换角色,eden 和 S1 的存活对象被复制到 S0,如此循环往复。如果对象的复制次数达到16次,该对象就会被送到老年代中。