Hologres

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
简介: Hologres

  Hologres作为HSAP服务分析一体化的落地最佳实践,其查询引擎是一个完全自研的执行引擎,它的核心设计目标是支持所有类型的分布式分析和服务查询,并做到极致查询性能。为了做到这一点,我们借鉴了各种分布式查询系统,包括分析型数据库,实时数仓等,吸取了各方面的优势从零开始打造出一个全新的执行引擎。

  为什么要选择从零开始做一个新的查询引擎?开源的分布式分析查询系统主要有两大类:

  一类是传统的 Massively Parallel Processing 系统,能够支持通用的 SQL 查询,但是对实时场景支持不够好,性能不够理想。

  一类是 Apache Druid 和 ClickHouse这些实时数仓,是专门为实时场景设计和优化的,能够比较好地支持一些常见的单表实时查询,但是复杂查询的性能比较差。

  另外大数据生态圈基于 MapReduce 的引擎比较适合批处理 ETL,一般不太适合在线服务和多维分析的场景,性能也差不少。

  Hologres 执行引擎是在一个能支持复杂查询和上述高性能实时服务查询的通用架构,先首先实现了常用的实时数仓场景,深入优化并用内部 Benchmark 验证了性能和稳定性超过包括专用实时数仓的其它竞品之后,再扩展到其它复杂查询的支持。扩展的过程中,在不可避免地系统变得越来越复杂的同时,也用 Benchmark 帮助保持简单实时查询的性能没有回退。如果在已有的查询引擎上做改进,因为很多架构和设计上的选择已经定型,牵一发而动全身,就很难达到这样的效果。

相关实践学习
基于Hologres轻量实时的高性能OLAP分析
本教程基于GitHub Archive公开数据集,通过DataWorks将GitHub中的项⽬、行为等20多种事件类型数据实时采集至Hologres进行分析,同时使用DataV内置模板,快速搭建实时可视化数据大屏,从开发者、项⽬、编程语⾔等多个维度了解GitHub实时数据变化情况。
目录
相关文章
|
网络协议 API
计算机网络:传输层——多路复用与解复用
计算机网络:传输层——多路复用与解复用
336 0
|
SQL 关系型数据库 MySQL
实时数仓 Hologres操作报错合集之遇到报错:连接到 FE 失败,剩余的连接槽保留用于非复制超级用户连接,该怎么处理
在使用阿里云实时数仓Hologres时,可能会遇到不同类型的错误。例如:1.内存超限错误、2.字符串缓冲区扩大错误、3.分区导入错误、4.外部表访问错误、5.服务未开通或权限问题、6.数据类型范围错误,下面是一些常见错误案例及可能的原因与解决策略的概览。
|
4月前
|
算法 Java 测试技术
Java 从入门到实战完整学习路径与项目实战指南
本文详细介绍了“Java从入门到实战”的学习路径与应用实例,涵盖基础、进阶、框架工具及项目实战四个阶段。内容包括环境搭建、语法基础、面向对象编程,数据结构与算法、多线程并发、JVM原理,以及Spring框架等核心技术。通过学生管理系统、文件下载器和博客系统等实例,帮助读者将理论应用于实践。最后,提供全链路电商系统的开发方案,涉及前后端技术栈与分布式架构。附代码资源链接,助力成为合格的Java开发者。
142 4
|
6月前
|
人工智能 前端开发 Java
十几行代码实现 Manus,Spring AI Alibaba Graph 快速预览
Spring AI Alibaba Graph 的核心开发已完成,即将发布正式版本。开发者可基于此轻松构建工作流、智能体及多智能体系统,功能丰富且灵活。文章通过三个示例展示了其应用:1) 客户评价处理系统,实现两级问题分类与自动处理;2) 基于 ReAct Agent 的天气预报查询系统,循环执行用户指令直至完成;3) 基于 Supervisor 多智能体的 OpenManus 实现,简化了流程控制逻辑并优化了工具覆盖度。此外,还提供了运行示例的方法及未来规划,欢迎开发者参与贡献。
|
4月前
|
监控 搜索推荐 Java
Java 多线程最新实操技术与应用场景全解析:从基础到进阶
本文深入探讨了Java多线程的现代并发编程技术,涵盖Java 8+新特性,如CompletableFuture异步处理、Stream并行流操作,以及Reactive编程中的Reactor框架。通过具体代码示例,讲解了异步任务组合、并行流优化及响应式编程的核心概念(Flux与Mono)。同时对比了同步、CompletableFuture和Reactor三种实现方式的性能,并总结了最佳实践,帮助开发者构建高效、扩展性强的应用。资源地址:[点击下载](https://pan.quark.cn/s/14fcf913bae6)。
265 3
|
11月前
|
SQL 流计算 关系型数据库
基于OpenLake的Flink+Paimon+EMR StarRocks流式湖仓分析
阿里云OpenLake解决方案建立在开放可控的OpenLake湖仓之上,提供大数据搜索与AI一体化服务。通过元数据管理平台DLF管理结构化、半结构化和非结构化数据,提供湖仓数据表和文件的安全访问及IO加速,并支持大数据、搜索和AI多引擎对接。本文为您介绍以Flink作为Openlake方案的核心计算引擎,通过流式数据湖仓Paimon(使用DLF 2.0存储)和EMR StarRocks搭建流式湖仓。
982 5
基于OpenLake的Flink+Paimon+EMR StarRocks流式湖仓分析
|
8月前
|
安全 搜索推荐 数据安全/隐私保护
产品经理-需求层次理论 - AxureMost
需求层次理论由马斯洛提出,将人类需求分为五个层次:生理、安全、社交、尊重和自我实现。该理论在产品设计中广泛应用,指导设计师创造满足用户深层次需求的产品。通过确保基本功能、强化安全、促进社交、提供个性化选项及支持自我实现,产品不仅能提升功能性,还能增强用户的心理满足感和忠诚度。
|
SQL Cloud Native 数据挖掘
Hologres:高性能实时数据分析引擎
Hologres:高性能实时数据分析引擎