服务网格驱动的新场景定义:AI 模型服务 Model Mesh

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: 这个能力来源于我们的实际客户的诉求。 这些客户使用场景就是希望在服务网格技术之上运行KServe来实现AI服务。KServe平滑运行于服务网格之上, 实现模型服务的蓝/绿和金丝雀部署、修订版本之间的流量分配等能力。支持自动伸缩的Serverless推理工作负载部署、支持高可扩展性、基于并发的智能负载路由等能力。

KServe(原KFServing)是云原生环境的的一个模型服务器和推理引擎,可以支持自动缩放、零缩放、金丝雀部署等能力。KServe 作为模型服务器,为大规模服务机器学习和深度学习模型提供了基础。KServe 可以部署为传统的 Kubernetes 部署,也可以部署为支持归零的Serverless部署。对于Serverless部署,它利用了Istio和Knative Serving,具有基于流量的自动扩缩功能以及模型的蓝/绿和金丝雀部署等。

image.png

本文将介绍如何结合阿里云服务网格ASM和阿里云容器服务平台Kubernetes(ACK)来部署。

前提条件

  • 创建Istio版本为1.12.4.50或更高版本的阿里云服务网格 (ASM) 实例。
  • 创建容器服务Kubernetes (ACK) 集群。
  • 将ACK集群添加到ASM实例。
  • ASM开启数据面KubeAPI访问能力。
  • 在数据面ACK集群中已经安装Knative v0.26, 参见https://developer.aliyun.com/article/975639
  • KServe选择 v0.7版本。

安装KServe组件

1. 安装Cert Manager

KServe依赖Cert Manager组件。建议安装版本v1.8.0或以上。本文以v1.8.0版本为例,使用如下命令安装:

kubectl apply -f  https://alibabacloudservicemesh.oss-cn-beijing.aliyuncs.com/certmanager/v1.8.0/cert-manager.yaml

2. 安装KServe

需要在执行之前, 确认kserve.yaml中以下资源的apiVersion值从cert-manager.io/v1alpha2修改为cert-manager.io/v1。

apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
  name: serving-cert
  namespace: kserve
spec:
  commonName: kserve-webhook-server-service.kserve.svc
  dnsNames:
  - kserve-webhook-server-service.kserve.svc
  issuerRef:
    kind: Issuer
    name: selfsigned-issuer
  secretName: kserve-webhook-server-cert
---
apiVersion: cert-manager.io/v1
kind: Issuer
metadata:
  name: selfsigned-issuer
  namespace: kserve
spec:
  selfSigned: {}
---

因为https://alibabacloudservicemesh.oss-cn-beijing.aliyuncs.com/kserve/v0.7/kserve.yaml文件中已经修正上述apiVersion, 可以直接执行如下命令安装部署。

kubectl apply -f https://alibabacloudservicemesh.oss-cn-beijing.aliyuncs.com/kserve/v0.7/kserve.yaml

执行结果类似如下所示:

namespace/kserve created
customresourcedefinition.apiextensions.k8s.io/inferenceservices.serving.kserve.io created
customresourcedefinition.apiextensions.k8s.io/trainedmodels.serving.kserve.io created
role.rbac.authorization.k8s.io/leader-election-role created
clusterrole.rbac.authorization.k8s.io/kserve-manager-role created
clusterrole.rbac.authorization.k8s.io/kserve-proxy-role created
rolebinding.rbac.authorization.k8s.io/leader-election-rolebinding created
clusterrolebinding.rbac.authorization.k8s.io/kserve-manager-rolebinding created
clusterrolebinding.rbac.authorization.k8s.io/kserve-proxy-rolebinding created
configmap/inferenceservice-config created
configmap/kserve-config created
secret/kserve-webhook-server-secret created
service/kserve-controller-manager-metrics-service created
service/kserve-controller-manager-service created
service/kserve-webhook-server-service created
statefulset.apps/kserve-controller-manager created
certificate.cert-manager.io/serving-cert created
issuer.cert-manager.io/selfsigned-issuer created
mutatingwebhookconfiguration.admissionregistration.k8s.io/inferenceservice.serving.kserve.io created
validatingwebhookconfiguration.admissionregistration.k8s.io/inferenceservice.serving.kserve.io created
validatingwebhookconfiguration.admissionregistration.k8s.io/trainedmodel.serving.kserve.io created

创建ASM网关

如果已经创建过ASM网关, 可以跳过该步骤。
在ASM控制台中可以通过UI界面点击创建, 其中保留端口80为后面应用使用。具体参见 https://help.aliyun.com/document_detail/150510.html

通过运行以下命令获取外部 IP 地址:

kubectl --namespace istio-system get service istio-ingressgateway

创建第一个推理服务

使用scikit-learn的训练模型进行测试。

创建命名空间

首先,创建用于部署KServe资源的命名空间。

kubectl create namespace kserve-test

创建 InferenceService

kubectl apply -n kserve-test -f - <<EOF
apiVersion: "serving.kserve.io/v1beta1"
kind: "InferenceService"
metadata:
  name: "sklearn-iris"
spec:
  predictor:
    sklearn:
      storageUri: "https://alibabacloudservicemesh.oss-cn-beijing.aliyuncs.com/kserve/v0.7/model.joblib"
EOF

检查创建状态。
使用数据面Kubeconfig,执行如下命令查询inferenceservices的sklearn-iris的安装状态。

kubectl get inferenceservices sklearn-iris -n kserve-test

得到类似如下执行结果。

NAME           URL                                           READY   PREV   LATEST   PREVROLLEDOUTREVISION   LATESTREADYREVISION                    AGE
sklearn-iris   http://sklearn-iris.kserve-test.example.com   True           100                              sklearn-iris-predictor-default-00001   7m8s

同时在安装完成后,会自动创建对应模型配置的虚拟服务。可以到服务网格ASM控制台查看, 类似结果如下。
image.png

此外, 也会看到Knative对应的网关规则定义(注意是在命名空间knative-serving下), 类似结果如下:
image.png

访问模型服务

创建模型输入文件

cat <<EOF > "./iris-input.json"
{
  "instances": [
    [6.8,  2.8,  4.8,  1.4],
    [6.0,  3.4,  4.5,  1.6]
  ]
}
EOF

通过ASM网关进行访问

获取SERVICE_HOSTNAME:

SERVICE_HOSTNAME=$(kubectl get inferenceservice sklearn-iris -n kserve-test -o jsonpath='{.status.url}' | cut -d "/" -f 3)
echo $SERVICE_HOSTNAME

运行结果类似如下:

sklearn-iris.kserve-test.example.com

使用前面创建的ASM网关地址, 访问上述示例模型服务, 执行如下命令:

ASM_GATEWAY="XXXX"
curl  -H "Host: ${SERVICE_HOSTNAME}" http://${ASM_GATEWAY}:80/v1/models/sklearn-iris:predict -d @./iris-input.json 

运行结果类似如下:

curl  -H "Host: ${SERVICE_HOSTNAME}" http://${ASM_GATEWAY}:80/v1/models/sklearn-iris:predict -d @./iris-input.json
{"predictions": [1, 1]}

性能测试

执行如下命令, 测试上面部署的模型服务的性能。

kubectl create -f https://alibabacloudservicemesh.oss-cn-beijing.aliyuncs.com/kserve/v0.7/loadtest.yaml -n kserve-test

得到类似结果如下:

kubectl logs -n kserve-test load-testchzwx--1-kf29t
Requests      [total, rate, throughput]         30000, 500.02, 500.01
Duration      [total, attack, wait]             59.999s, 59.998s, 1.352ms
Latencies     [min, mean, 50, 90, 95, 99, max]  1.196ms, 1.463ms, 1.378ms, 1.588ms, 1.746ms, 2.99ms, 18.873ms
Bytes In      [total, mean]                     690000, 23.00
Bytes Out     [total, mean]                     2460000, 82.00
Success       [ratio]                           100.00%
Status Codes  [code:count]                      200:30000
Error Set:

总结

上述这个能力来源于我们的实际客户的诉求。 这些客户使用场景就是希望在服务网格技术之上运行KServe来实现AI服务。KServe平滑运行于服务网格之上, 实现模型服务的蓝/绿和金丝雀部署、修订版本之间的流量分配等能力。支持自动伸缩的Serverless推理工作负载部署、支持高可扩展性、基于并发的智能负载路由等能力。

作为业内首个全托管Istio兼容的阿里云服务网格产品ASM,一开始从架构上就保持了与社区、业界趋势的一致性,控制平面的组件托管在阿里云侧,与数据面侧的用户集群独立。ASM产品是基于社区Istio定制实现的,在托管的控制面侧提供了用于支撑精细化的流量管理和安全管理的组件能力。通过托管模式,解耦了Istio组件与所管理的K8s集群的生命周期管理,使得架构更加灵活,提升了系统的可伸缩性。从2022年4月1日起,阿里云服务网格ASM正式推出商业化版本, 提供了更丰富的能力、更大的规模支持及更完善的技术保障,更好地满足客户的不同需求场景, 详情可见产品介绍:https://www.aliyun.com/product/servicemesh

image.png

相关文章
|
27天前
|
存储 人工智能 Cloud Native
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
在9月20日2024云栖大会上,阿里云智能集团副总裁,数据库产品事业部负责人,ACM、CCF、IEEE会士(Fellow)李飞飞发表《从数据到智能:Data+AI驱动的云原生数据库》主题演讲。他表示,数据是生成式AI的核心资产,大模型时代的数据管理系统需具备多模处理和实时分析能力。阿里云瑶池将数据+AI全面融合,构建一站式多模数据管理平台,以数据驱动决策与创新,为用户提供像“搭积木”一样易用、好用、高可用的使用体验。
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
|
4天前
|
机器学习/深度学习 人工智能 语音技术
Fugatto:英伟达推出的多功能AI音频生成模型
Fugatto是由英伟达推出的多功能AI音频生成模型,能够根据文本提示生成音频或视频,并修改现有音频文件。该模型基于增强型的Transformer模型,支持复杂的组合指令,具有强大的音频生成与转换能力,广泛应用于音乐创作、声音设计、语音合成等领域。
42 1
Fugatto:英伟达推出的多功能AI音频生成模型
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
智能化软件测试:AI驱动的自动化测试策略与实践####
本文深入探讨了人工智能(AI)在软件测试领域的创新应用,通过分析AI技术如何优化测试流程、提升测试效率及质量,阐述了智能化软件测试的核心价值。文章首先概述了传统软件测试面临的挑战,随后详细介绍了AI驱动的自动化测试工具与框架,包括自然语言处理(NLP)、机器学习(ML)算法在缺陷预测、测试用例生成及自动化回归测试中的应用实例。最后,文章展望了智能化软件测试的未来发展趋势,强调了持续学习与适应能力对于保持测试策略有效性的重要性。 ####
|
26天前
|
人工智能 Cloud Native 数据管理
媒体声音|重磅升级,阿里云发布首个“Data+AI”驱动的一站式多模数据平台
在2024云栖大会上,阿里云瑶池数据库发布了首个一站式多模数据管理平台DMS:OneMeta+OneOps。该平台由Data+AI驱动,兼容40余种数据源,实现跨云数据库、数据仓库、数据湖的统一数据治理,帮助用户高效提取和分析元数据,提升业务决策效率10倍。DMS已服务超10万企业客户,降低数据管理成本高达90%。
104 19
|
15天前
|
存储 人工智能 大数据
AI驱动下的云存储创新
随着大数据时代的到来,云存储作为数据存储和管理的核心基础设施,其重要性日益凸显。同时, AI 快速发展也为云存储的进化与创新提供了强大的驱动力。本话题将解读AI 驱动下云存储的进化趋势,分享阿里云存储的创新技术,助力企业实现数字化升级。
|
24天前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI驱动的个性化学习平台构建###
【10月更文挑战第29天】 本文将深入探讨如何利用人工智能技术,特别是机器学习与大数据分析,构建一个能够提供高度个性化学习体验的在线平台。我们将分析当前在线教育的挑战,提出通过智能算法实现内容定制、学习路径优化及实时反馈机制的技术方案,以期为不同背景和需求的学习者创造更加高效、互动的学习环境。 ###
50 3
|
1月前
|
机器学习/深度学习 人工智能 运维
智能化运维:AI驱动下的IT运维革命###
本文探讨了人工智能(AI)技术在IT运维领域的创新应用,强调其在提升效率、预防故障及优化资源配置中的关键作用,揭示了智能运维的新趋势。 ###
|
27天前
|
数据采集 人工智能 搜索推荐
|
27天前
|
数据采集 人工智能 搜索推荐
大咖说|Data+AI:企业智能化转型的核心驱动力
在数字化浪潮的推动下,企业正面临前所未有的挑战与机遇。数据与人工智能的结合,形成了强大的Data+AI力量,尤其在近期人工智能迅速发展的背景下,这一力量正在加速重塑企业的运营模式、竞争策略和市场前景,成为适应变化、提升竞争力、推动创新的核心驱动力。本文将讨论企业采用Data+AI平台的必要性及其在企业智能化转型中的作用。
132 0
大咖说|Data+AI:企业智能化转型的核心驱动力
|
1月前
|
人工智能
AI科学家太多,谁靠谱一试便知!普林斯顿新基准CORE-Bench:最强模型仅有21%准确率
【10月更文挑战第21天】普林斯顿大学研究人员提出了CORE-Bench,一个基于计算可重复性的AI代理基准,涵盖计算机科学、社会科学和医学领域的270个任务。该基准旨在评估AI代理在科学研究中的准确性,具有多样性、难度级别和现实相关性等特点,有助于推动AI代理的发展并提高计算可重复性。
48 4