机器学习之深度学习简介

简介: 机器学习之深度学习简介

深度学习

1. 深度学习介绍

深度学习(Deep learning)是机器学习的一个分支领域,其源于人工
神经网络的研究。
深度学习广泛应用在计算机视觉,音频处理,自然语言处理等诸多领
域。
在这里插入图片描述
人工神经网络(Artificial Neural Network),以数学模型模拟神经
元活动,是基于模仿大脑神经网络结构和功能而建立的一种信息处理系
统。
在这里插入图片描述
生物神经细胞结构

在这里插入图片描述

感知器模型

在这里插入图片描述

2. 深度学习原理

前向传播(Forward Propagation),从输入经过一层层隐层计算得
到输出的过程,也就是加权求和,然后经过一个激活函数。
在这里插入图片描述
反向传播(Backward Propagation)则是与前向传播的计算方向相
反,它是计算输出值与真实值之间的误差,通过网络反向流动来计算每
一层参数的梯度(偏导数),来更新训练参数。
在这里插入图片描述
1)常用激活函数
1、Sigmoid函数
在这里插入图片描述
导数
在这里插入图片描述
2、tanh函数
在这里插入图片描述
导数

在这里插入图片描述
3、Relu函数
在这里插入图片描述
导数
在这里插入图片描述
4、Leaky Relu函数

在这里插入图片描述导数
在这里插入图片描述

2)常用损失函数
1、均方差损失函数
在这里插入图片描述
2、交叉熵损失函数
在这里插入图片描述
(3)常用优化函数
1、SGD:随机梯度下降优化器

在这里插入图片描述
2、Momentum:带动量的随机梯度下降

在这里插入图片描述

3、Nesterov Accelerated Gradient:牛顿加速梯度下降

在这里插入图片描述
4、Adagrad(Adaptive gradient):自适应梯度下降
在这里插入图片描述5、Adadelta
在这里插入图片描述

在这里插入图片描述
6、RMSprop

在这里插入图片描述
6、Adam:Adaptive Moment Estimation

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

3. 深度学习实现

深度学习网络实现回归
深度学习网络实现分类

目录
相关文章
|
1月前
|
机器学习/深度学习 人工智能 安全
探索AI的未来:从机器学习到深度学习
【10月更文挑战第28天】本文将带你走进AI的世界,从机器学习的基本概念到深度学习的复杂应用,我们将一起探索AI的未来。你将了解到AI如何改变我们的生活,以及它在未来可能带来的影响。无论你是AI专家还是初学者,这篇文章都将为你提供新的视角和思考。让我们一起探索AI的奥秘,看看它将如何塑造我们的未来。
73 3
|
11天前
|
机器学习/深度学习 人工智能 算法
探索机器学习:从线性回归到深度学习
本文将带领读者从基础的线性回归模型开始,逐步深入到复杂的深度学习网络。我们将通过代码示例,展示如何实现这些算法,并解释其背后的数学原理。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和知识。让我们一起踏上这段激动人心的旅程吧!
|
1月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
76 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
22天前
|
机器学习/深度学习 人工智能 TensorFlow
基于TensorFlow的深度学习模型训练与优化实战
基于TensorFlow的深度学习模型训练与优化实战
62 0
|
28天前
|
机器学习/深度学习 自然语言处理 语音技术
探索机器学习中的深度学习模型:原理与应用
探索机器学习中的深度学习模型:原理与应用
35 0
|
2月前
|
机器学习/深度学习 自然语言处理 算法
机器学习和深度学习之间的区别
机器学习和深度学习在实际应用中各有优势和局限性。机器学习适用于一些数据量较小、问题相对简单、对模型解释性要求较高的场景;而深度学习则在处理大规模、复杂的数据和任务时表现出色,但需要更多的计算资源和数据,并且模型的解释性较差。在实际应用中,需要根据具体的问题和需求,结合两者的优势,选择合适的方法来解决问题。
82 0
|
9天前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
44 5
|
1天前
|
机器学习/深度学习 网络架构 计算机视觉
深度学习在图像识别中的应用与挑战
【10月更文挑战第21天】 本文探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过研究卷积神经网络(CNN)的结构和原理,本文展示了深度学习如何提高图像识别的准确性和效率。同时,本文也讨论了数据不平衡、过拟合、计算资源限制等问题,并提出了相应的解决策略。
30 19
|
1天前
|
机器学习/深度学习 传感器 人工智能
探索深度学习在图像识别中的应用与挑战
【10月更文挑战第21天】 本文深入探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过介绍卷积神经网络(CNN)的基本原理和架构设计,阐述了深度学习如何有效地从图像数据中提取特征,并在多个领域实现突破性进展。同时,文章也指出了训练深度模型时常见的过拟合问题、数据不平衡以及计算资源需求高等挑战,并提出了相应的解决策略。
26 7
|
11天前
|
机器学习/深度学习 自动驾驶 算法
深度学习在图像识别中的应用
本文将探讨深度学习技术在图像识别领域的应用。我们将介绍深度学习的基本原理,以及如何利用这些原理进行图像识别。我们将通过一个简单的代码示例来演示如何使用深度学习模型进行图像分类。最后,我们将讨论深度学习在图像识别领域的未来发展趋势和挑战。