机器学习之深度学习卷积神经网络,实现基于CNN网络的手写字体识别

简介: 机器学习之深度学习卷积神经网络,实现基于CNN网络的手写字体识别

实现基于CNN网络的手写字体识别

首先下载数据
在这里插入图片描述

1、搭建CNN网络模型;

class CNN(nn.Module):
    def __init__(self):
        super(CNN,self).__init__()
        '''
        一般来说,卷积网络包括以下内容:
        1.卷积层
        2.神经网络
        3.池化层
        '''
        self.conv1=nn.Sequential(
            nn.Conv2d(              #--> (1,28,28)
                in_channels=1,      #传入的图片是几层的,灰色为1层,RGB为三层
                out_channels=16,    #输出的图片是几层
                kernel_size=5,      #代表扫描的区域点为5*5
                stride=1,           #就是每隔多少步跳一下
                padding=2,          #边框补全,其计算公式=(kernel_size-1)/2=(5-1)/2=2
            ),    # 2d代表二维卷积           --> (16,28,28)
            nn.ReLU(),              #非线性激活层
            nn.MaxPool2d(kernel_size=2),    #设定这里的扫描区域为2*2,且取出该2*2中的最大值          --> (16,14,14)
        )

        self.conv2=nn.Sequential(
            nn.Conv2d(              #       --> (16,14,14)
                in_channels=16,     #这里的输入是上层的输出为16层
                out_channels=32,    #在这里我们需要将其输出为32层
                kernel_size=5,      #代表扫描的区域点为5*5
                stride=1,           #就是每隔多少步跳一下
                padding=2,          #边框补全,其计算公式=(kernel_size-1)/2=(5-1)/2=
            ),                      #   --> (32,14,14)
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2),    #设定这里的扫描区域为2*2,且取出该2*2中的最大值     --> (32,7,7),这里是三维数据
        )

        self.out=nn.Linear(32*7*7,10)       #注意一下这里的数据是二维的数据

    def forward(self,x):
        x=self.conv1(x)
        x=self.conv2(x)     #(batch,32,7,7)
        #然后接下来进行一下扩展展平的操作,将三维数据转为二维的数据
        x=x.view(x.size(0),-1)    #(batch ,32 * 7 * 7)
        output=self.out(x)
        return output

2、设计损失函数,选择优化函数;

# 添加优化方法
optimizer=torch.optim.Adam(cnn.parameters(),lr=LR)
# 指定损失函数使用交叉信息熵
loss_fn=nn.CrossEntropyLoss()

3、实现模型训练与测试。

step=0
for epoch in range(EPOCH):
    #加载训练数据
    for step,data in enumerate(train_loader):
        x,y=data
        #分别得到训练数据的x和y的取值
        b_x=Variable(x)
        b_y=Variable(y)

        output=cnn(b_x)         #调用模型预测
        loss=loss_fn(output,b_y)#计算损失值
        optimizer.zero_grad()   #每一次循环之前,将梯度清零
        loss.backward()         #反向传播
        optimizer.step()        #梯度下降

        #每执行50次,输出一下当前epoch、loss、accuracy
        if (step%50==0):
            #计算一下模型预测正确率
            test_output=cnn(test_x)
            y_pred=torch.max(test_output,1)[1].data.squeeze()
            accuracy=sum(y_pred==test_y).item()/test_y.size(0)

            print('now epoch :  ', epoch, '   |  loss : %.4f ' % loss.item(), '     |   accuracy :   ' , accuracy)

在这里插入图片描述

代码:

import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.utils.data as Data
import torchvision


#Hyper prameters
EPOCH=1
BATCH_SIZE=50
LR=0.001
DOWNLOAD_MNIST=False

train_data = torchvision.datasets.MNIST(
    root='./mnist',
    train=True,
    transform=torchvision.transforms.ToTensor(),    #将下载的文件转换成pytorch认识的tensor类型,且将图片的数值大小从(0-255)归一化到(0-1)
    download=DOWNLOAD_MNIST
)



train_loader=Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)

test_data=torchvision.datasets.MNIST(
    root='./mnist',
    train=False,
)
with torch.no_grad():
    test_x=Variable(torch.unsqueeze(test_data.data, dim=1)).type(torch.FloatTensor)[:2000]/255   #只取前两千个数据吧,差不多已经够用了,然后将其归一化。
    test_y=test_data.targets[:2000]

'''开始建立CNN网络'''
class CNN(nn.Module):
    def __init__(self):
        super(CNN,self).__init__()
        '''
        一般来说,卷积网络包括以下内容:
        1.卷积层
        2.神经网络
        3.池化层
        '''
        self.conv1=nn.Sequential(
            nn.Conv2d(              #--> (1,28,28)
                in_channels=1,      #传入的图片是几层的,灰色为1层,RGB为三层
                out_channels=16,    #输出的图片是几层
                kernel_size=5,      #代表扫描的区域点为5*5
                stride=1,           #就是每隔多少步跳一下
                padding=2,          #边框补全,其计算公式=(kernel_size-1)/2=(5-1)/2=2
            ),    # 2d代表二维卷积           --> (16,28,28)
            nn.ReLU(),              #非线性激活层
            nn.MaxPool2d(kernel_size=2),    #设定这里的扫描区域为2*2,且取出该2*2中的最大值          --> (16,14,14)
        )

        self.conv2=nn.Sequential(
            nn.Conv2d(              #       --> (16,14,14)
                in_channels=16,     #这里的输入是上层的输出为16层
                out_channels=32,    #在这里我们需要将其输出为32层
                kernel_size=5,      #代表扫描的区域点为5*5
                stride=1,           #就是每隔多少步跳一下
                padding=2,          #边框补全,其计算公式=(kernel_size-1)/2=(5-1)/2=
            ),                      #   --> (32,14,14)
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2),    #设定这里的扫描区域为2*2,且取出该2*2中的最大值     --> (32,7,7),这里是三维数据
        )

        self.out=nn.Linear(32*7*7,10)       #注意一下这里的数据是二维的数据

    def forward(self,x):
        x=self.conv1(x)
        x=self.conv2(x)     #(batch,32,7,7)
        #然后接下来进行一下扩展展平的操作,将三维数据转为二维的数据
        x=x.view(x.size(0),-1)    #(batch ,32 * 7 * 7)
        output=self.out(x)
        return output
        
cnn=CNN()
# print(cnn)

# 添加优化方法
optimizer=torch.optim.Adam(cnn.parameters(),lr=LR)
# 指定损失函数使用交叉信息熵
loss_fn=nn.CrossEntropyLoss()

'''
开始训练我们的模型哦
'''
step=0
for epoch in range(EPOCH):
    #加载训练数据
    for step,data in enumerate(train_loader):
        x,y=data
        #分别得到训练数据的x和y的取值
        b_x=Variable(x)
        b_y=Variable(y)

        output=cnn(b_x)         #调用模型预测
        loss=loss_fn(output,b_y)#计算损失值
        optimizer.zero_grad()   #每一次循环之前,将梯度清零
        loss.backward()         #反向传播
        optimizer.step()        #梯度下降

        #每执行50次,输出一下当前epoch、loss、accuracy
        if (step%50==0):
            #计算一下模型预测正确率
            test_output=cnn(test_x)
            y_pred=torch.max(test_output,1)[1].data.squeeze()
            accuracy=sum(y_pred==test_y).item()/test_y.size(0)

            print('now epoch :  ', epoch, '   |  loss : %.4f ' % loss.item(), '     |   accuracy :   ' , accuracy)

'''
打印十个测试集的结果
'''
test_output=cnn(test_x[:10])
y_pred=torch.max(test_output,1)[1].data.squeeze()       #选取最大可能的数值所在的位置
print(y_pred.tolist(),'predecton Result')
print(test_y[:10].tolist(),'Real Result')
目录
相关文章
|
2天前
|
机器学习/深度学习 PyTorch 算法框架/工具
使用Python实现卷积神经网络(CNN)
使用Python实现卷积神经网络(CNN)的博客教程
23 1
|
8天前
|
机器学习/深度学习 人工智能 算法
【AI 初识】什么是卷积神经网络 (CNN)?
【5月更文挑战第2天】【AI 初识】什么是卷积神经网络 (CNN)?
|
8天前
|
机器学习/深度学习 自然语言处理 搜索推荐
|
10天前
|
机器学习/深度学习 PyTorch TensorFlow
【Python机器学习专栏】循环神经网络(RNN)与LSTM详解
【4月更文挑战第30天】本文探讨了处理序列数据的关键模型——循环神经网络(RNN)及其优化版长短期记忆网络(LSTM)。RNN利用循环结构处理序列依赖,但遭遇梯度消失/爆炸问题。LSTM通过门控机制解决了这一问题,有效捕捉长距离依赖。在Python中,可使用深度学习框架如PyTorch实现LSTM。示例代码展示了如何定义和初始化一个简单的LSTM网络结构,强调了RNN和LSTM在序列任务中的应用价值。
|
10天前
|
机器学习/深度学习 PyTorch TensorFlow
【Python机器学习专栏】卷积神经网络(CNN)的原理与应用
【4月更文挑战第30天】本文介绍了卷积神经网络(CNN)的基本原理和结构组成,包括卷积层、激活函数、池化层和全连接层。CNN在图像识别等领域表现出色,其层次结构能逐步提取特征。在Python中,可利用TensorFlow或PyTorch构建CNN模型,示例代码展示了使用TensorFlow Keras API创建简单CNN的过程。CNN作为强大深度学习模型,未来仍有广阔发展空间。
|
10天前
|
机器学习/深度学习 自然语言处理 语音技术
【Python 机器学习专栏】Python 深度学习入门:神经网络基础
【4月更文挑战第30天】本文介绍了Python在深度学习中应用于神经网络的基础知识,包括神经网络概念、基本结构、训练过程,以及Python中的深度学习库TensorFlow和PyTorch。通过示例展示了如何使用Python实现神经网络,并提及优化技巧如正则化和Dropout。最后,概述了神经网络在图像识别、语音识别和自然语言处理等领域的应用,并强调掌握这些知识对深度学习的重要性。随着技术进步,神经网络的应用将持续扩展,期待更多创新。
|
2天前
|
机器学习/深度学习 存储 人工智能
【人工智能】机器学习算法综述及常见算法详解
【人工智能】机器学习算法综述及常见算法详解
|
4天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的支持向量机(SVM)算法
【5月更文挑战第6天】在数据科学和人工智能的广阔天地中,支持向量机(SVM)以其强大的分类能力与理论深度成为机器学习领域中的一个闪亮的星。本文将深入探讨SVM的核心原理、关键特性以及实际应用案例,为读者提供一个清晰的视角来理解这一高级算法,并展示如何利用SVM解决实际问题。
28 7
|
4天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的支持向量机算法
【5月更文挑战第6天】 在数据科学和人工智能领域,支持向量机(SVM)是一种强大的监督学习模型,它凭借其出色的分类能力在众多机器学习任务中占据重要地位。本文旨在深入剖析支持向量机的工作原理,探讨其在高维数据处理中的优势以及面对大规模数据集时的应对策略。通过对核技巧、软间隔以及优化问题的讨论,我们将揭示SVM如何优雅地处理线性不可分问题,并保持模型的泛化性能。
|
8天前
|
机器学习/深度学习 自然语言处理 算法
机器学习算法原理与应用:深入探索与实战
【5月更文挑战第2天】本文深入探讨机器学习算法原理,包括监督学习(如线性回归、SVM、神经网络)、非监督学习(聚类、PCA)和强化学习。通过案例展示了机器学习在图像识别(CNN)、自然语言处理(RNN/LSTM)和推荐系统(协同过滤)的应用。随着技术发展,机器学习正广泛影响各领域,但也带来隐私和算法偏见问题,需关注解决。

热门文章

最新文章