面试突击60:什么情况会导致 MySQL 索引失效?

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 面试突击60:什么情况会导致 MySQL 索引失效?

为了验证 MySQL 中哪些情况下会导致索引失效,我们可以借助 explain 执行计划来分析索引失效的具体场景。

explain 使用如下,只需要在查询的 SQL 前面添加上 explain 关键字即可,如下图所示:
image.png
而以上查询结果的列中,我们最主要观察 key 这一列,key 这一列表示实际使用的索引,如果为 NULL 则表示未使用索引,反之则使用了索引。

以上所有结果列说明如下:

  • id — 选择标识符,id 越大优先级越高,越先被执行;
  • select_type — 表示查询的类型;
  • table — 输出结果集的表;
  • partitions — 匹配的分区;
  • type — 表示表的连接类型;
  • possible_keys — 表示查询时,可能使用的索引;
  • key — 表示实际使用的索引;
  • key_len — 索引字段的长度;
  • ref— 列与索引的比较;
  • rows — 大概估算的行数;
  • filtered — 按表条件过滤的行百分比;
  • Extra — 执行情况的描述和说明。

其中最重要的就是 type 字段,type 值类型如下:

  • all — 扫描全表数据;
  • index — 遍历索引;
  • range — 索引范围查找;
  • index_subquery — 在子查询中使用 ref;
  • unique_subquery — 在子查询中使用 eq_ref;
  • ref_or_null — 对 null 进行索引的优化的 ref;
  • fulltext — 使用全文索引;
  • ref — 使用非唯一索引查找数据;
  • eq_ref — 在 join 查询中使用主键或唯一索引关联;
  • const — 将一个主键放置到 where 后面作为条件查询, MySQL 优化器就能把这次查询优化转化为一个常量,如何转化以及何时转化,这个取决于优化器,这个比 eq_ref 效率高一点。

    创建测试表和数据

    为了演示和测试那种情况下会导致索引失效,我们先创建一个测试表和相应的数据:

    -- 创建表
    drop table if exists student;
    create table student(
      id int primary key auto_increment comment '主键',
      sn varchar(32) comment '学号',
      name varchar(250) comment '姓名',
      age int comment '年龄',
      sex bit comment '性别',
      address varchar(250) comment '家庭地址',
      key idx_address (address),
      key idx_sn_name_age (sn,name,age)
    )ENGINE=InnoDB DEFAULT CHARSET=utf8;
    -- 添加测试数据
    insert into student(id,sn,name,age,sex,address) 
      values(1,'cn001','张三',18,1,'高老庄'),
      (2,'cn002','李四',20,0,'花果山'),
      (3,'cn003','王五',50,1,'水帘洞');

    当前表中总共有 3 个索引,如下图所示:
    image.png

    PS:本文以下内容基于 MySQL 5.7 InnoDB 数据引擎下。

索引失效情况1:非最左匹配

最左匹配原则指的是,以最左边的为起点字段查询可以使用联合索引,否则将不能使用联合索引。
我们本文的联合索引的字段顺序是 sn + name + age,我们假设它们的顺序是 A + B + C,以下联合索引的使用情况如下:
image.png
从上述结果可以看出,如果是以最左边开始匹配的字段都可以使用上联合索引,比如:

  • A+B+C
  • A+B
  • A+C

    其中:A 等于字段 sn,B 等于字段 name,C 等于字段 age。

而 B+C 却不能使用到联合索引,这就是最左匹配原则。

索引失效情况2:错误模糊查询

模糊查询 like 的常见用法有 3 种:

  1. 模糊匹配后面任意字符:like '张%'
  2. 模糊匹配前面任意字符:like '%张'
  3. 模糊匹配前后任意字符:like '%张%'

而这 3 种模糊查询中只有第 1 种查询方式可以使用到索引,具体执行结果如下:
image.png

索引失效情况3:列运算

如果索引列使用了运算,那么索引也会失效,如下图所示:
image.png

索引失效情况4:使用函数

查询列如果使用任意 MySQL 提供的函数就会导致索引失效,比如以下列使用了 ifnull 函数之后的执行计划如下:
image.png

索引失效情况5:类型转换

如果索引列存在类型转换,那么也不会走索引,比如 address 为字符串类型,而查询的时候设置了 int 类型的值就会导致索引失效,如下图所示:
image.png

索引失效情况6:使用 is not null

当在查询中使用了 is not null 也会导致索引失效,而 is null 则会正常触发索引的,如下图所示:
image.png

总结

导致 MySQL 索引失效的常见场景有以下 6 种:

  1. 联合索引不满足最左匹配原则。
  2. 模糊查询最前面的为不确定匹配字符。
  3. 索引列参与了运算。
  4. 索引列使用了函数。
  5. 索引列存在类型转换。
  6. 索引列使用 is not null 查询。
是非审之于己,毁誉听之于人,得失安之于数。

公众号:Java面试真题解析

面试合集:https://gitee.com/mydb/interview

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
14天前
|
存储 关系型数据库 MySQL
美团面试:MySQL为什么 不用 Docker部署?
45岁老架构师尼恩在读者交流群中分享了关于“MySQL为什么不推荐使用Docker部署”的深入分析。通过系统化的梳理,尼恩帮助读者理解为何大型MySQL数据库通常不使用Docker部署,主要涉及性能、管理复杂度和稳定性等方面的考量。文章详细解释了有状态容器的特点、Docker的资源隔离问题以及磁盘IO性能损耗,并提供了小型MySQL使用Docker的最佳实践。此外,尼恩还介绍了Share Nothing架构的优势及其应用场景,强调了配置管理和数据持久化的挑战。最后,尼恩建议读者参考《尼恩Java面试宝典PDF》以提升技术能力,更好地应对面试中的难题。
|
2天前
|
SQL 存储 关系型数据库
MySQL原理简介—9.MySQL索引原理
本文详细介绍了MySQL索引的设计与使用原则,涵盖磁盘数据页的存储结构、页分裂机制、主键索引设计及查询过程、聚簇索引和二级索引的原理、B+树索引的维护、联合索引的使用规则、SQL排序和分组时如何利用索引、回表查询对性能的影响以及索引覆盖的概念。此外还讨论了索引设计的案例,包括如何处理where筛选和order by排序之间的冲突、低基数字段的处理方式、范围查询字段的位置安排,以及通过辅助索引来优化特定查询场景。总结了设计索引的原则,如尽量包含where、order by、group by中的字段,选择离散度高的字段作为索引,限制索引数量,并针对频繁查询的低基数字段进行特殊处理等。
MySQL原理简介—9.MySQL索引原理
|
1月前
|
SQL 存储 关系型数据库
MySQL秘籍之索引与查询优化实战指南
最左前缀原则。不冗余原则。最大选择性原则。所谓前缀索引,说白了就是对文本的前几个字符建立索引(具体是几个字符在建立索引时去指定),比如以产品名称的前 10 位来建索引,这样建立起来的索引更小,查询效率更快!
110 22
 MySQL秘籍之索引与查询优化实战指南
|
19天前
|
存储 关系型数据库 MySQL
MySQL索引学习笔记
本文深入探讨了MySQL数据库中慢查询分析的关键概念和技术手段。
|
22天前
|
存储 关系型数据库 MySQL
浅入浅出——MySQL索引
本文介绍了数据库索引的概念和各种索引结构,如哈希表、B+树、InnoDB引擎的索引运作原理等。还分享了覆盖索引、联合索引、最左前缀原则等优化技巧,以及如何避免索引误用,提高数据库性能。
|
1月前
|
存储 SQL 关系型数据库
MySQL 面试题
MySQL 的一些基础面试题
|
1月前
|
存储 关系型数据库 MySQL
MySQL中为什么要使用索引合并(Index Merge)?
通过这些内容的详细介绍和实际案例分析,希望能帮助您深入理解索引合并及其在MySQL中的
119 10
|
2月前
|
存储 关系型数据库 MySQL
【MYSQL】 ——索引(B树B+树)、设计栈
索引的特点,使用场景,操作,底层结构,B树B+树,MYSQL设计栈
|
19天前
|
关系型数据库 MySQL 数据库连接
数据库连接工具连接mysql提示:“Host ‘172.23.0.1‘ is not allowed to connect to this MySQL server“
docker-compose部署mysql8服务后,连接时提示不允许连接问题解决
|
5天前
|
关系型数据库 MySQL 数据库
Docker Compose V2 安装常用数据库MySQL+Mongo
以上内容涵盖了使用 Docker Compose 安装和管理 MySQL 和 MongoDB 的详细步骤,希望对您有所帮助。
73 42