【走进RDS】之RDS PostgreSQL索引推荐原理及最佳实践

本文涉及的产品
RDS PostgreSQL Serverless,0.5-4RCU 50GB 3个月
推荐场景:
对影评进行热评分析
云原生数据库 PolarDB 分布式版,标准版 2核8GB
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
简介: 很多开发人员都知道索引对于数据库的查询性能至关重要,一个好的索引能使数据库的性能提升成千上万倍。但给数据库加索引是一项相对专业的工作,需要对数据库的运行原理有一定了解。同时,加了索引有没有性能提升、性能提升了多少,这些都是加索引前就想知道的。这项繁杂的工作有没有更好的方案呢?有!就是今天重磅推出的索引推荐。

前言


很多开发人员都知道索引对于数据库的查询性能至关重要,一个好的索引能使数据库的性能提升成千上万倍。但给数据库加索引是一项相对专业的工作,需要对数据库的运行原理有一定了解。同时,加了索引有没有性能提升、性能提升了多少,这些都是加索引前就想知道的。这项繁杂的工作有没有更好的方案呢?有!就是今天重磅推出的索引推荐。


索引推荐这项技术概括起来就是通过分析SQL,枚举可能的索引组合,并通过优化器What-If的能力,选出其中收益最高的索引组合推荐给用户。索引推荐可以极大降低用户的使用门槛,增加数据库智能化能力。RDS PostgreSQL在新版本中已经自带索引推荐功能,可以通过访问PostgreSQL数据库亦或通过RDS控制台使用索引推荐功能。


技术原理

1、索引推荐流程


1、分析 Indexable Column,分析出SQL中哪些列可以利用索引,例如:


  • Where条件中的 =, >, <, between, in等列
  • Order By的排序列
  • Group By的聚合列
  • MIN,MAX函数列
  • Join的Condition列


2、构建 Candidate Index


  • 从IndexableColumn中构建出所有可能的Candidate Index
  • Candidate Index分为单列索引和联合索引,单列索引包括所有Indexable Column,联合索引以一定规则组合Indexable Column


3、优化器What-If选择最优

  • 利用优化器What-If的能力,将Candidate Index逐一评估,通过{CPU cost + IO cost}衡量代价,最终选择出使得SQL执行代价最低的Candidate Index


2、优化器What-if能力


G查询优化是基于代价的,分为启动代价,运行代价,总代价,计算方式为{CPU cost + IO cost}。


  • 启动代价:读取到第一条元组前花费的代价,比如索引扫描节点的启动代价就是读取目标表的索引页,获取到第一个元组的代价。
  • 运行代价:获取全部元组的代价。
  • 总代价:二者之和。


索引的代价计算是由固定公式得来,只要构造索引时补充公式需要的变量,就可以利用到优化器的What-If能力。



方案实现


1、总体流程


1、采用通用的索引推荐流程,注册planner_hook,遍历查询树,构造索引项,依赖优化器的What-If能力得到结果。

image.png

2、智能化索引推荐


采用通用的索引推荐流程,注册planner_hook,遍历查询树,构造索引项,依赖优化器的What-If能力得到结果。

image.png


2、详细设计


从查询树到candidate index


针对一条SQL,我们利用内核构造的查询树,精确找到哪些列可以成为索引,制造出索引候选项,交由优化器选择。

image.png

最佳实践

1、从RDS控制台进行可视化操作

进入RDS实例详情页面 -> 自治服务 -> 慢SQL ,可以在此处获得相关操作指引。

image.png

2、实操步骤

1、创建表


CREATE TABLE t( a INT, b INT );
INSERT INTO t SELECT s, 99999 - s FROM generate_series(0,99999) AS s;
ANALYZE t;
所生成的表包含以下各行:
   a   |   b
-------+-------
     0 | 99999
     1 | 99998
     2 | 99997
     3 | 99996
       .
       .
       .
 99997 |     2
 99998 |     1
 99999 |     0



2、查询单条SQL建议说明


如果希望索引推荐分析查询并提出索引编制建议但不实际执行查询,将EXPLAIN关键字作为SQL语句的前缀,示例如下:

postgres=# EXPLAIN SELECT * FROM t WHERE a < 10000;
                                   QUERY PLAN                                    
---------------------------------------------------------------------------------
 Seq Scan on t  (cost=0.00..1693.00 rows=9983 width=8)
   Filter: (a < 10000)
 Result  (cost=0.00..0.00 rows=0 width=0)
   One-Time Filter: '** plan (using Index Adviser) **'::text
   ->  Index Scan using "<1>t_a_idx" on t  (cost=0.42..256.52 rows=9983 width=8)
         Index Cond: (a < 10000)
(6 rows)

postgres=# EXPLAIN SELECT * FROM t WHERE a = 100;
                                 QUERY PLAN                                 
----------------------------------------------------------------------------
 Seq Scan on t  (cost=0.00..1693.00 rows=1 width=8)
   Filter: (a = 100)
 Result  (cost=0.00..0.00 rows=0 width=0)
   One-Time Filter: '** plan (using Index Adviser) **'::text
   ->  Index Scan using "<1>t_a_idx" on t  (cost=0.42..2.64 rows=1 width=8)
         Index Cond: (a = 100)
(6 rows)

postgres=# EXPLAIN SELECT * FROM t WHERE b = 10000;
                                 QUERY PLAN                                 
----------------------------------------------------------------------------
 Seq Scan on t  (cost=0.00..1693.00 rows=1 width=8)
   Filter: (b = 10000)
 Result  (cost=0.00..0.00 rows=0 width=0)
   One-Time Filter: '** plan (using Index Adviser) **'::text
   ->  Index Scan using "<1>t_b_idx" on t  (cost=0.42..2.64 rows=1 width=8)
         Index Cond: (b = 10000)
(6 rows)

可通过psql命令行查询index_advisory表内存储的索引编制建议,示例如下:

postgres=# SELECT * FROM index_advisory;
 reloid | relname | attrs | benefit | original_cost | new_cost | index_size | backend_pid |            timestamp
--------+---------+-------+---------+---------------+----------+------------+-------------+----------------------------------
  16438 | t       | {1}   | 1337.43 |          1693 |  355.575 |       2624 |       79370 | 18-JUN-21 08:55:51.492388 +00:00
  16438 | t       | {1}   | 1684.56 |          1693 |    8.435 |       2624 |       79370 | 18-JUN-21 08:59:00.319336 +00:00
  16438 | t       | {2}   | 1684.56 |          1693 |    8.435 |       2624 |       79370 | 18-JUN-21 08:59:07.814453 +00:00
(3 rows)


image.png

如果语句不带EXPLAIN关键字前缀,索引推荐将在语句执行期间分析语句并记录建议。


3、查询WorkLoad级别建议


通过show_index_advisory()函数获取单个会话的WorkLoad建议,此函数用于获取单个会话的索引推荐(由后端进程ID标识),可通过指定会话的进程ID


来调用该函数:

SELECT show_index_advisory( pid );


其中,pid 是当前会话的进程 ID。如果不知道当前会话的进程 ID,则传递值 NULL 也将为当前会话返回结果集。

postgres=# SELECT show_index_advisory(null);
                                                             show_index_advisory
----------------------------------------------------------------------------------------------------------------------------------------------------
 create index idx_t_a on public.t(a);/* size: 2624 KB, benefit: 3021.99, gain: 1.15167301457103, original_cost: 1693, new_cost: 182.005006313324 */
 create index idx_t_b on public.t(b);/* size: 2624 KB, benefit: 1684.56, gain: 0.641983590474943, original_cost: 1693, new_cost: 8.4350004196167 */
(2 rows)


说明 结果集中每行的表示意义如下:


  • 创建索引推荐建议的索引所需的SQL语句。
  • 索引页的估计大小。
  • 使用索引的总收益(benefit)。
  • 使用索引的增益(gain=benefit/size)。
  • 使用索引之前的平均代价(即执行SQL的预估时间)。
  • 使用索引之后的平均代价(即执行SQL的预估时间)。


通过select_index_advisory视图获取所有会话的WorkLoad建议,此视图包含计算的指标和CREATE INDEX语句,展示当前位于index_advisory表中所有会话的索引编制建议。表t中列a和列b的索引编制建议显示如下:

postgres=# SELECT * FROM select_index_advisory;
 backend_pid |                                                             show_index_advisory
-------------+----------------------------------------------------------------------------------------------------------------------------------------------------
       79370 | create index idx_t_a on public.t(a);/* size: 2624 KB, benefit: 3021.99, gain: 1.15167301457103, original_cost: 1693, new_cost: 182.005006313324 */
       79370 | create index idx_t_b on public.t(b);/* size: 2624 KB, benefit: 1684.56, gain: 0.641983590474943, original_cost: 1693, new_cost: 8.4350004196167 */
(2 rows)


在每个会话中,从同一建议的索引中受益的所有查询的结果将被组合起来,以便按每个建议的索引生成一组指标,此指标反映在名为benefit和gain的字段中,字段公式如下所示:

size = MAX(index size of all queries)
benefit = SUM(benefit of each query)
gain = SUM(benefit of each query) / MAX(index size of all queries)


说明 如果单条SQL建议同时创建多个索引,则index_advisory表中记录的new_cost为创建了多个索引之后的代价,而非创建某一个索引之后的代价。


当对给定会话期间得到的不同建议索引的相对优势进行比较时,gain指标十分有用。gain值越大,从索引中得到的成本效益就越高,这可以抵消索引可能消耗的磁盘空间。


未来展望

阿里云RDS PostgreSQL的索引推荐功能未来还会朝着以下几个方面进行扩展:


  1. 支持GIN、GIST、BRIN索引的推荐。BRIN索引为block索引,对于无法评估数据分布的场景无法推荐;GIST是数据聚集后的结果,也需要对数据分布有所了解;


  1. WorkLoad级别的推荐可以更加细化,当前是以benefit做聚合和排序,得出索引推荐,后续可以更加精细化。


作者信息


赵锐,花名:惜元,专注于RDS PostgreSQL内核研发,热爱和分享PostgreSQL数据库相关技术。欢迎有志之士加入RDS产品部!联系邮箱:vogts.wangt@alibaba-inc.com

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
24天前
|
存储 关系型数据库 MySQL
阿里面试:为什么要索引?什么是MySQL索引?底层结构是什么?
尼恩是一位资深架构师,他在自己的读者交流群中分享了关于MySQL索引的重要知识点。索引是帮助MySQL高效获取数据的数据结构,主要作用包括显著提升查询速度、降低磁盘I/O次数、优化排序与分组操作以及提升复杂查询的性能。MySQL支持多种索引类型,如主键索引、唯一索引、普通索引、全文索引和空间数据索引。索引的底层数据结构主要是B+树,它能够有效支持范围查询和顺序遍历,同时保持高效的插入、删除和查找性能。尼恩还强调了索引的优缺点,并提供了多个面试题及其解答,帮助读者在面试中脱颖而出。相关资料可在公众号【技术自由圈】获取。
|
1月前
|
存储 NoSQL 关系型数据库
为什么MySQL不使用红黑树做索引
本文详细探讨了MySQL索引机制,解释了为何添加索引能提升查询效率。索引如同数据库的“目录”,在数据量庞大时提高查询速度。文中介绍了常见索引数据结构:哈希表、有序数组和搜索树(包括二叉树、平衡二叉树、红黑树、B-树和B+树)。重点分析了B+树在MyISAM和InnoDB引擎中的应用,并讨论了聚簇索引、非聚簇索引、联合索引及最左前缀原则。最后,还介绍了LSM-Tree在高频写入场景下的优势。通过对比多种数据结构,帮助理解不同场景下的索引选择。
73 6
|
1月前
|
SQL 关系型数据库 MySQL
案例剖析:MySQL唯一索引并发插入导致死锁!
案例剖析:MySQL唯一索引并发插入导致死锁!
案例剖析:MySQL唯一索引并发插入导致死锁!
|
22天前
|
存储 关系型数据库 MySQL
MySQL主从复制原理和使用
本文介绍了MySQL主从复制的基本概念、原理及其实现方法,详细讲解了一主两从的架构设计,以及三种常见的复制模式(全同步、异步、半同步)的特点与适用场景。此外,文章还提供了Spring Boot环境下配置主从复制的具体代码示例,包括数据源配置、上下文切换、路由实现及切面编程等内容,帮助读者理解如何在实际项目中实现数据库的读写分离。
MySQL主从复制原理和使用
|
1月前
|
存储 关系型数据库 MySQL
Mysql(4)—数据库索引
数据库索引是用于提高数据检索效率的数据结构,类似于书籍中的索引。它允许用户快速找到数据,而无需扫描整个表。MySQL中的索引可以显著提升查询速度,使数据库操作更加高效。索引的发展经历了从无索引、简单索引到B-树、哈希索引、位图索引、全文索引等多个阶段。
61 3
Mysql(4)—数据库索引
|
1月前
|
缓存 算法 关系型数据库
Mysql(3)—数据库相关概念及工作原理
数据库是一个以某种有组织的方式存储的数据集合。它通常包括一个或多个不同的主题领域或用途的数据表。
50 5
Mysql(3)—数据库相关概念及工作原理
|
15天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
76 1
|
1月前
|
存储 缓存 关系型数据库
MySQL事务日志-Redo Log工作原理分析
事务的隔离性和原子性分别通过锁和事务日志实现,而持久性则依赖于事务日志中的`Redo Log`。在MySQL中,`Redo Log`确保已提交事务的数据能持久保存,即使系统崩溃也能通过重做日志恢复数据。其工作原理是记录数据在内存中的更改,待事务提交时写入磁盘。此外,`Redo Log`采用简单的物理日志格式和高效的顺序IO,确保快速提交。通过不同的落盘策略,可在性能和安全性之间做出权衡。
1623 14
|
22天前
|
SQL 关系型数据库 MySQL
Mysql中搭建主从复制原理和配置
主从复制在数据库管理中广泛应用,主要优点包括提高性能、实现高可用性、数据备份及灾难恢复。通过读写分离、从服务器接管、实时备份和地理分布等机制,有效增强系统的稳定性和数据安全性。主从复制涉及I/O线程和SQL线程,前者负责日志传输,后者负责日志应用,确保数据同步。配置过程中需开启二进制日志、设置唯一服务器ID,并创建复制用户,通过CHANGE MASTER TO命令配置从服务器连接主服务器,实现数据同步。实验部分展示了如何在两台CentOS 7服务器上配置MySQL 5.7主从复制,包括关闭防火墙、配置静态IP、设置域名解析、配置主从服务器、启动复制及验证同步效果。
Mysql中搭建主从复制原理和配置
|
25天前
|
存储 关系型数据库 MySQL
如何在MySQL中进行索引的创建和管理?
【10月更文挑战第16天】如何在MySQL中进行索引的创建和管理?
53 1

相关产品

  • 云数据库 RDS
  • 云数据库 RDS PostgreSQL 版
  • 云数据库 RDS MySQL 版