这个大表走索引字段查询的 SQL 怎么就成全扫描了

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 这个大表走索引字段查询的 SQL 怎么就成全扫描了

今天收到运营同学的一个 SQL,有点复杂,尤其是这个 SQL explain 都很长时间执行不出来,于是我们后台团队帮忙解决这个 SQL 问题,却正好发现了一个隐藏很深的线上问题。


image.png


select 
a.share_code,
a.generated_time,
a.share_user_id,
b.user_count,
b.order_count,
a.share_order_id,
b.rewarded_amount
from t_risk_share_code a,
(select count(distinct r.user_id) user_count,
count(distinct r.order_id) order_count,
s.rewarded_amount,
r.share_code
from t_order s,t_order_rel r
where r.order_id = s.id and r.type = 1 and r.share_code = '我刚刚分享的订单编码'
group by r.share_code) b
where a.share_code = b.share_code and a.type = 1

首先,我们发现,直接 EXPLAIN 这个 SQL 也很慢,也就是可能某些子查询被实际执行了导致。所以,第一步我们先将其中的子查询拆解出来,逐步分析,即:

select count(distinct r.user_id) user_count,
count(distinct r.order_id) order_count,
max(s.rewarded_amount),
r.share_code
from t_order s,t_order_rel r
where r.order_id = s.id and r.type = 1 and r.share_code = '我刚刚分享的订单编码'
group by r.share_code

EXPLAIN 这个 SQL,执行很快,我们发现结果是:


image.png


奇了怪了,怎么 t_order 这张表的扫描就成为全扫描了?这张表的索引是正常的呀,主键就是 id。



image.png


根据官方文档,可以知道有如下几个原因

  1. 表太小了,走索引不值当的。但我们这里这两张表都非常大,都是千万级别的数据。
  2. 对于 WHERE 或者 ON 的条件,没有合适的索引,这也不是我们这里的情况,两张表都针对 WHERE 和 ON 条件有合适的索引(这里查询条件虽然都放到了 WHERE 里面,但是后面的分析我们会知道这个 SQL 会被改成 JOIN ON + WHERE 去执行)。
  3. 使用索引列与常数值作比较, MYSQL 通过索引分析出这个覆盖了表中大部分的值,其实就是分析出命中的行最后回表拉取数据的时候,表的文件中大部分页都要被加载到内存中进行读取,这样的话与其说先将索引加载到内存中获取命中列,不如直接扫描整个表,反正最后也是差不多将表的文件中大部分页都加载到内存中。这种情况很显然,不走索引反而会更快。我们这个 SQL 中,t_order_rel 表实际上根据 where 条件只会返回几十条数据,t_order 与 t_order_rel 是 1 对多的关系,这里不会命中太多数据的。
  4. 这一列值的离散度(Cardinality)太低,离散度就是是不同值的个数除以行数,最大为 1。但是这个值对于 innoDB 引擎来说,并不是实时计算的,可能不准确(尤其是在这一列的值发生更新导致行在页中的位置发生变化的时候).但是对于 distinct 或者主键列是不用计算的,就是 1。如果离散度太低,那么其实和第三种情况差不多,会命中过多的行数。这里我们要优化的 SQL 使用的是主键,所以不属于这种情况。

虽然以上都不是我们这里要讨论的情况,但是这里还是提一些我们为了避免出现全扫描的优化:

  1. 为了让 SQL 执行计划分析器更准确,针对第四种情况,我们对于某些表可能需要在业务闲时定期执行 ANALYZE TABLE,来确保分析器的统计数据的准确性。
  2. 由于考虑分库分表,以及有时候数据库 SQL 执行计划总是不完美还是会出现索引走错的情况,我们一般尽量在 OLTP 查询业务上加 force index 强制走一些索引。这在使用基于中间件的分库分表(例如 sharding-jdbc)或者原生分布式数据库(例如 TiDB)过程中,我们经常遇到的坑。
  3. 对于 MySQL,我们设置 --max-seeks-for-key = 10000(默认这个值非常大),这样其实就是限制了每次 SQL 执行计划分析器分析出来的走索引可能扫描的行数。其原理非常简单,参考源码:

sql_planner.cc

double find_cost_for_ref(const THD *thd, TABLE *table, unsigned keyno,
                         double num_rows, double worst_seeks) {
  //将分析出会扫描的行数与 max_seeks_for_key 作对比,取其中小的那个
  //也就是 SQL 分析器得出的结论中,走索引扫描的行数不会超过 max_seeks_for_key
  num_rows = std::min(num_rows, double(thd->variables.max_seeks_for_key));
  if (table->covering_keys.is_set(keyno)) {
    // We can use only index tree
    const Cost_estimate index_read_cost =
        table->file->index_scan_cost(keyno, 1, num_rows);
    return index_read_cost.total_cost();
  } else if (keyno == table->s->primary_key &&
             table->file->primary_key_is_clustered()) {
    const Cost_estimate table_read_cost =
        table->file->read_cost(keyno, 1, num_rows);
    return table_read_cost.total_cost();
  } else
    return min(table->cost_model()->page_read_cost(num_rows), worst_seeks);
}

这个不能设置太小,否则会出现可以走多个索引但是走到实际扫描行数最多的索引


image.png


现在没办法了,EXPLAIN 已经不够我们分析出问题了,只能进一步求助 optimizer_trace 了。不直接用 optimizer_trace 的原因是,optimizer_trace 必须完整的执行 SQL 之后,才能获取到所有有用的信息。

## 打开 optimizer_trace
set session optimizer_trace="enabled=on";
## 执行 SQL
select .....
## 查询 trace 结果
SELECT trace FROM information_schema.OPTIMIZER_TRACE;

通过 trace 结果我们发现,实际执行的 SQL 是:

SELECT
  各种字段
FROM
  `t_order_rel` `r`
  JOIN `t_order` `s` 
WHERE
  (
  ( `r`.`order_id` = CONVERT ( `s`.`id` USING utf8mb4 ) ) 
  AND ( `r`.`type` = 1 ) 
  AND ( `r`.`share_code` = 'B2MTB6C' ) 
  )

我去,原来两个表的字段的编码是不一样的!导致 JOIN ON 的时候,套了一层编码转换 CONVERT (s.idUSING utf8mb4 ) ).我们知道,字段外套一层函数这种条件匹配,是走不到索引的,例如:date(create_time) < "2021-8-1" 是不能走索引的,但是 create_time < "2021-8-1" 是可以的。不同类型之间列的比较,也走不到索引,因为 MySQL 会自动套上类型转换函数。这也是 MySQL 的语法糖经常带来的误用

这个 t_order_rel 的默认编码和其他表不一样,由于某些字段使用了 emoji 表情,所以建表的时候整个表默认编码使用了 utf8mb4。而且这个表仅仅是记录使用,没有 OLTP 的业务,只有一些运营同学使用的 OLAP 场景。所以一直没有发现这个问题。

修改字段编码后,SQL 终于不是全扫描了。同时以后要注意:

  1. 数据库指定默认的编码,表不再指定默认编码,同时对于需要使用特殊编码的字段,针对字段指定编码
  2. join,where 的时候,注意 compare 两边的类型是否一致,是否会导致不走索引


相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
10天前
|
SQL NoSQL Java
Java使用sql查询mongodb
通过使用 MongoDB Connector for BI 和 JDBC,开发者可以在 Java 中使用 SQL 语法查询 MongoDB 数据库。这种方法对于熟悉 SQL 的团队非常有帮助,能够快速实现对 MongoDB 数据的操作。同时,也需要注意到这种方法的性能和功能限制,根据具体应用场景进行选择和优化。
37 9
|
30天前
|
SQL 存储 人工智能
Vanna:开源 AI 检索生成框架,自动生成精确的 SQL 查询
Vanna 是一个开源的 Python RAG(Retrieval-Augmented Generation)框架,能够基于大型语言模型(LLMs)为数据库生成精确的 SQL 查询。Vanna 支持多种 LLMs、向量数据库和 SQL 数据库,提供高准确性查询,同时确保数据库内容安全私密,不外泄。
106 7
Vanna:开源 AI 检索生成框架,自动生成精确的 SQL 查询
|
2月前
|
SQL Java
使用java在未知表字段情况下通过sql查询信息
使用java在未知表字段情况下通过sql查询信息
39 8
|
2月前
|
SQL 安全 PHP
PHP开发中防止SQL注入的方法,包括使用参数化查询、对用户输入进行过滤和验证、使用安全的框架和库等,旨在帮助开发者有效应对SQL注入这一常见安全威胁,保障应用安全
本文深入探讨了PHP开发中防止SQL注入的方法,包括使用参数化查询、对用户输入进行过滤和验证、使用安全的框架和库等,旨在帮助开发者有效应对SQL注入这一常见安全威胁,保障应用安全。
66 4
|
2月前
|
SQL 监控 关系型数据库
SQL语句当前及历史信息查询-performance schema的使用
本文介绍了如何使用MySQL的Performance Schema来获取SQL语句的当前和历史执行信息。Performance Schema默认在MySQL 8.0中启用,可以通过查询相关表来获取详细的SQL执行信息,包括当前执行的SQL、历史执行记录和统计汇总信息,从而快速定位和解决性能瓶颈。
|
2月前
|
SQL 存储 缓存
如何优化SQL查询性能?
【10月更文挑战第28天】如何优化SQL查询性能?
173 10
|
2月前
|
SQL 关系型数据库 MySQL
|
SQL Go 数据库
SQLSERVER中如何忽略索引提示
原文:SQLSERVER中如何忽略索引提示 SQLSERVER中如何忽略索引提示 当我们想让某条查询语句利用某个索引的时候,我们一般会在查询语句里加索引提示,就像这样 SELECT id,name from TB with (index(IX_xttrace_bal)) where ba...
1073 0
|
4月前
|
关系型数据库 MySQL 网络安全
5-10Can't connect to MySQL server on 'sh-cynosl-grp-fcs50xoa.sql.tencentcdb.com' (110)")
5-10Can't connect to MySQL server on 'sh-cynosl-grp-fcs50xoa.sql.tencentcdb.com' (110)")
|
6月前
|
SQL 存储 监控
SQL Server的并行实施如何优化?
【7月更文挑战第23天】SQL Server的并行实施如何优化?
140 13