如何监控 Log4j2 异步日志遇到写入瓶颈

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
可观测监控 Prometheus 版,每月50GB免费额度
简介: 如何监控 Log4j2 异步日志遇到写入瓶颈

如何监控 Log4j2 异步日志遇到写入瓶颈


在之前的一篇文章中(一次鞭辟入里的 Log4j2 异步日志输出阻塞问题的定位),我们详细分析了一个经典的 Log4j2 异步日志阻塞问题的定位,主要原因还是日志文件写入慢了。并且比较深入的分析了 Log4j2 异步日志的原理,最后给出了一些解决方案。


新的问题 - 如何更好的应对这种情况?


之前提出的解决方案仅仅是针对之前定位的问题的优化,但是随着业务发展,日志量肯定会更多,大量的日志可能导致写入日志成为新的性能瓶颈。对于这种情况,我们需要监控

首先想到的是进程外部采集系统指标监控:现在服务都提倡上云,并实现云原生服务。对于云服务,存储日志很可能使用 NFS(Network File System),例如 AWS 的 EFS。这种 NFS 一动都可以动态的控制 IO 最大承载,但是服务的增长是很难预估完美的,并且高并发业务流量基本都是一瞬间到达,仅通过 IO 定时采集很难评估到真正的流量尖峰(例如 IO 定时采集是 5s 一次,但是在某一秒内突然到达很多流量,导致进程内大多线程阻塞,这之后采集 IO 看到 IO 压力貌似不大的样子)。并且,由于线程的阻塞,导致可能我们看到的 CPU 占用貌似也不高的样子。所以,外部定时采集指标,很难真正定位到日志流量问题。

然后我们考虑进程自己监控,暴露接口给外部监控定时检查,例如 K8s 的 pod 健康检查等等。在进程的日志写入压力过大的时候,新扩容一个实例;启动完成后,在注册中心将这个日志压力大的进程的状态设置为暂时下线(例如 Eureka 置为 OUT_OF_SERVICE,Nacos 置为 PAUSED),让流量转发到其他实例。待日志压力小之后,再修改状态为 UP,继续服务。

那么如何实现这种监控呢?


监控 Log4j2 异步日志的核心 - 监控 RingBuffer


根据之前我们分析 Log4j2 异步日志的原理,我们知道其核心是 RingBuffer 这个数据结构作为缓存。我们可以监控其剩余大小的变化来判断当前日志压力。那么怎么能拿到呢?


Log4j2 异步日志与 RingBuffer 的关系


Log4j2 对于每一个 AsyncLogger 配置,都会创建一个独立的 RingBuffer,例如下面的 Log4j2 配置:

<!--省略了除了 loggers 以外的其他配置-->
 <loggers>
    <!--default logger -->
    <Asyncroot level="info" includeLocation="true">
        <appender-ref ref="console"/>
    </Asyncroot>
    <AsyncLogger name="RocketmqClient" level="error" additivity="false" includeLocation="true">
        <appender-ref ref="console"/>
    </AsyncLogger>
    <AsyncLogger name="com.alibaba.druid.pool.DruidDataSourceStatLoggerImpl" level="error" additivity="false" includeLocation="true">
        <appender-ref ref="console"/>
    </AsyncLogger>
    <AsyncLogger name="org.mybatis" level="error" additivity="false" includeLocation="true">
        <appender-ref ref="console"/>
    </AsyncLogger>
</loggers>

这个配置包含 4 个 AsyncLogger,对于每个 AsyncLogger 都会创建一个 RingBuffer。Log4j2 也考虑到了监控 AsyncLogger 这种情况,所以将 AsyncLogger 的监控暴露成为一个 MBean(JMX Managed Bean)。

相关源码如下:

Server.java

private static void registerLoggerConfigs(final LoggerContext ctx, final MBeanServer mbs, final Executor executor)
        throws InstanceAlreadyExistsException, MBeanRegistrationException, NotCompliantMBeanException {
    //获取 log4j2.xml 配置中的 loggers 标签下的所有配置值
    final Map<String, LoggerConfig> map = ctx.getConfiguration().getLoggers();
    //遍历每个 key,其实就是 logger 的 name
    for (final String name : map.keySet()) {
        final LoggerConfig cfg = map.get(name);
        final LoggerConfigAdmin mbean = new LoggerConfigAdmin(ctx, cfg);
        //对于每个 logger 注册一个 LoggerConfigAdmin
        register(mbs, mbean, mbean.getObjectName());
        //如果是异步日志配置,则注册一个 RingBufferAdmin
        if (cfg instanceof AsyncLoggerConfig) {
            final AsyncLoggerConfig async = (AsyncLoggerConfig) cfg;
            final RingBufferAdmin rbmbean = async.createRingBufferAdmin(ctx.getName());
            register(mbs, rbmbean, rbmbean.getObjectName());
        }
    }
}

创建的 MBean 的类源码:RingBufferAdmin.java

public class RingBufferAdmin implements RingBufferAdminMBean {
    private final RingBuffer<?> ringBuffer;
    private final ObjectName objectName;
    //... 省略其他我们不关心的代码
    public static final String DOMAIN = "org.apache.logging.log4j2";
    String PATTERN_ASYNC_LOGGER_CONFIG = DOMAIN + ":type=%s,component=Loggers,name=%s,subtype=RingBuffer";
    //创建 RingBufferAdmin,名称格式符合 Mbean 的名称格式
    public static RingBufferAdmin forAsyncLoggerConfig(final RingBuffer<?> ringBuffer, 
            final String contextName, final String configName) {
        final String ctxName = Server.escape(contextName);
        //对于 RootLogger,这里 cfgName 为空字符串
        final String cfgName = Server.escape(configName);
        final String name = String.format(PATTERN_ASYNC_LOGGER_CONFIG, ctxName, cfgName);
        return new RingBufferAdmin(ringBuffer, name);
    }
    //获取 RingBuffer 的大小
    @Override
    public long getBufferSize() {
        return ringBuffer == null ? 0 : ringBuffer.getBufferSize();
    }
    //获取 RingBuffer 剩余的大小
    @Override
    public long getRemainingCapacity() {
        return ringBuffer == null ? 0 : ringBuffer.remainingCapacity();
    }
    public ObjectName getObjectName() {
        return objectName;
    }
}

我们可以通过 JConsole 查看对应的 MBean:


微信图片_20220625142300.jpg


其中 2f0e140b 为 LoggerContext 的 name。


Spring Boot + Prometheus 监控 Log4j2 RingBuffer 大小


我们的微服务项目中使用了 spring boot,并且集成了 prometheus。我们可以通过将 Log4j2 RingBuffer 大小作为指标暴露到 prometheus 中,通过如下代码:

import io.micrometer.core.instrument.Gauge;
import io.micrometer.prometheus.PrometheusMeterRegistry;
import lombok.extern.log4j.Log4j2;
import org.apache.commons.lang3.StringUtils;
import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.core.LoggerContext;
import org.apache.logging.log4j.core.jmx.RingBufferAdminMBean;
import org.springframework.beans.factory.ObjectProvider;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.actuate.autoconfigure.metrics.export.ConditionalOnEnabledMetricsExport;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.event.ContextRefreshedEvent;
import org.springframework.context.event.EventListener;
import javax.annotation.PostConstruct;
import javax.management.ObjectName;
import java.lang.management.ManagementFactory;
@Log4j2
@Configuration(proxyBeanMethods = false)
//需要在引入了 prometheus 并且 actuator 暴露了 prometheus 端口的情况下才加载
@ConditionalOnEnabledMetricsExport("prometheus")
public class Log4j2Configuration {
    @Autowired
    private ObjectProvider<PrometheusMeterRegistry> meterRegistry;
    //只初始化一次
    private volatile boolean isInitialized = false;
    //需要在 ApplicationContext 刷新之后进行注册
    //在加载 ApplicationContext 之前,日志配置就已经初始化好了
    //但是 prometheus 的相关 Bean 加载比较复杂,并且随着版本更迭改动比较多,所以就直接偷懒,在整个 ApplicationContext 刷新之后再注册
    // ApplicationContext 可能 refresh 多次,例如调用 /actuator/refresh,还有就是多 ApplicationContext 的场景
    // 这里为了简单,通过一个简单的 isInitialized 判断是否是第一次初始化,保证只初始化一次
    @EventListener(ContextRefreshedEvent.class)
    public synchronized void init() {
        if (!isInitialized) {
            //通过 LogManager 获取 LoggerContext,从而获取配置
            LoggerContext loggerContext = (LoggerContext) LogManager.getContext(false);
            org.apache.logging.log4j.core.config.Configuration configuration = loggerContext.getConfiguration();
            //获取 LoggerContext 的名称,因为 Mbean 的名称包含这个
            String ctxName = loggerContext.getName();
            configuration.getLoggers().keySet().forEach(k -> {
                try {
                    //针对 RootLogger,它的 cfgName 是空字符串,为了显示好看,我们在 prometheus 中将它命名为 root
                    String cfgName = StringUtils.isBlank(k) ? "" : k;
                    String gaugeName = StringUtils.isBlank(k) ? "root" : k;
                    Gauge.builder(gaugeName + "_logger_ring_buffer_remaining_capacity", () ->
                    {
                        try {
                            return (Number) ManagementFactory.getPlatformMBeanServer()
                                    .getAttribute(new ObjectName(
                                            //按照 Log4j2 源码中的命名方式组装名称
                                            String.format(RingBufferAdminMBean.PATTERN_ASYNC_LOGGER_CONFIG, ctxName, cfgName)
                                            //获取剩余大小,注意这个是严格区分大小写的
                                    ), "RemainingCapacity");
                        } catch (Exception e) {
                            log.error("get {} ring buffer remaining size error", k, e);
                        }
                        return -1;
                    }).register(meterRegistry.getIfAvailable());
                } catch (Exception e) {
                    log.error("Log4j2Configuration-init error: {}", e.getMessage(), e);
                }
            });
            isInitialized = true;
        }
    }
}

增加这个代码之后,请求 /actuator/prometheus 之后,可以看到对应的返回:

//省略其他的
# HELP root_logger_ring_buffer_remaining_capacity  
# TYPE root_logger_ring_buffer_remaining_capacity gauge
root_logger_ring_buffer_remaining_capacity 262144.0
# HELP org_mybatis_logger_ring_buffer_remaining_capacity  
# TYPE org_mybatis_logger_ring_buffer_remaining_capacity gauge
org_mybatis_logger_ring_buffer_remaining_capacity 262144.0
# HELP com_alibaba_druid_pool_DruidDataSourceStatLoggerImpl_logger_ring_buffer_remaining_capacity  
# TYPE com_alibaba_druid_pool_DruidDataSourceStatLoggerImpl_logger_ring_buffer_remaining_capacity gauge
com_alibaba_druid_pool_DruidDataSourceStatLoggerImpl_logger_ring_buffer_remaining_capacity 262144.0
# HELP RocketmqClient_logger_ring_buffer_remaining_capacity  
# TYPE RocketmqClient_logger_ring_buffer_remaining_capacity gauge
RocketmqClient_logger_ring_buffer_remaining_capacity 262144.0

这样,当这个值为 0 持续一段时间后(就代表 RingBuffer 满了,日志生成速度已经远大于消费写入 Appender 的速度了),我们就认为这个应用日志负载过高了。

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
相关文章
|
2月前
|
XML 安全 Java
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
本文介绍了Java日志框架的基本概念和使用方法,重点讨论了SLF4J、Log4j、Logback和Log4j2之间的关系及其性能对比。SLF4J作为一个日志抽象层,允许开发者使用统一的日志接口,而Log4j、Logback和Log4j2则是具体的日志实现框架。Log4j2在性能上优于Logback,推荐在新项目中使用。文章还详细说明了如何在Spring Boot项目中配置Log4j2和Logback,以及如何使用Lombok简化日志记录。最后,提供了一些日志配置的最佳实践,包括滚动日志、统一日志格式和提高日志性能的方法。
558 31
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
|
29天前
|
监控 安全 Apache
什么是Apache日志?为什么Apache日志分析很重要?
Apache是全球广泛使用的Web服务器软件,支持超过30%的活跃网站。它通过接收和处理HTTP请求,与后端服务器通信,返回响应并记录日志,确保网页请求的快速准确处理。Apache日志分为访问日志和错误日志,对提升用户体验、保障安全及优化性能至关重要。EventLog Analyzer等工具可有效管理和分析这些日志,增强Web服务的安全性和可靠性。
|
3月前
|
XML JSON Java
Logback 与 log4j2 性能对比:谁才是日志框架的性能王者?
【10月更文挑战第5天】在Java开发中,日志框架是不可或缺的工具,它们帮助我们记录系统运行时的信息、警告和错误,对于开发人员来说至关重要。在众多日志框架中,Logback和log4j2以其卓越的性能和丰富的功能脱颖而出,成为开发者们的首选。本文将深入探讨Logback与log4j2在性能方面的对比,通过详细的分析和实例,帮助大家理解两者之间的性能差异,以便在实际项目中做出更明智的选择。
383 3
|
7天前
|
SQL 关系型数据库 MySQL
MySQL事务日志-Undo Log工作原理分析
事务的持久性是交由Redo Log来保证,原子性则是交由Undo Log来保证。如果事务中的SQL执行到一半出现错误,需要把前面已经执行过的SQL撤销以达到原子性的目的,这个过程也叫做"回滚",所以Undo Log也叫回滚日志。
MySQL事务日志-Undo Log工作原理分析
|
1月前
|
存储 监控 安全
什么是事件日志管理系统?事件日志管理系统有哪些用处?
事件日志管理系统是IT安全的重要工具,用于集中收集、分析和解释来自组织IT基础设施各组件的事件日志,如防火墙、路由器、交换机等,帮助提升网络安全、实现主动威胁检测和促进合规性。系统支持多种日志类型,包括Windows事件日志、Syslog日志和应用程序日志,通过实时监测、告警及可视化分析,为企业提供强大的安全保障。然而,实施过程中也面临数据量大、日志管理和分析复杂等挑战。EventLog Analyzer作为一款高效工具,不仅提供实时监测与告警、可视化分析和报告功能,还支持多种合规性报告,帮助企业克服挑战,提升网络安全水平。
|
2月前
|
存储 监控 安全
什么是日志管理,如何进行日志管理?
日志管理是对IT系统生成的日志数据进行收集、存储、分析和处理的实践,对维护系统健康、确保安全及获取运营智能至关重要。本文介绍了日志管理的基本概念、常见挑战、工具的主要功能及选择解决方案的方法,强调了定义管理目标、日志收集与分析、警报和报告、持续改进等关键步骤,以及如何应对数据量大、安全问题、警报疲劳等挑战,最终实现日志数据的有效管理和利用。
179 0
|
3月前
|
Python
log日志学习
【10月更文挑战第9天】 python处理log打印模块log的使用和介绍
51 0
|
3月前
|
数据可视化
Tensorboard可视化学习笔记(一):如何可视化通过网页查看log日志
关于如何使用TensorBoard进行数据可视化的教程,包括TensorBoard的安装、配置环境变量、将数据写入TensorBoard、启动TensorBoard以及如何通过网页查看日志文件。
321 0
|
5月前
|
Kubernetes Ubuntu Windows
【Azure K8S | AKS】分享从AKS集群的Node中查看日志的方法(/var/log)
【Azure K8S | AKS】分享从AKS集群的Node中查看日志的方法(/var/log)
150 3
|
3月前
|
存储 缓存 关系型数据库
MySQL事务日志-Redo Log工作原理分析
事务的隔离性和原子性分别通过锁和事务日志实现,而持久性则依赖于事务日志中的`Redo Log`。在MySQL中,`Redo Log`确保已提交事务的数据能持久保存,即使系统崩溃也能通过重做日志恢复数据。其工作原理是记录数据在内存中的更改,待事务提交时写入磁盘。此外,`Redo Log`采用简单的物理日志格式和高效的顺序IO,确保快速提交。通过不同的落盘策略,可在性能和安全性之间做出权衡。
1763 14
MySQL事务日志-Redo Log工作原理分析