每日一面 - mysql 大表批量删除大量数据

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 每日一面 - mysql 大表批量删除大量数据
问题参考自: https://www.zhihu.com/question/440066129/answer/1685329456 ,mysql中,一张表里有3亿数据,未分表,其中一个字段是企业类型,企业类型是一般企业和个体户,个体户的数据量差不多占50%,根据条件把个体户的行都删掉。请问如何操作?答案为个人原创

假设表的引擎是 Innodb, MySQL 5.7+

删除一条记录,首先锁住这条记录数据原有的被废弃记录头发生变化,主要是打上了删除标记。也就是原有的数据 deleted_flag 变成 1,代表数据被删除。但是数据没有被清空,在新一行数据大小小于这一行的时候,可能会占用这一行。这样其实就是存储碎片

之后,相关数据的索引需要更新,清除这些数据。并且,会产生对应的 binlog 与 redolog 日志。 如果 delete 的数据是大量的数据,则会:

  • 如果不加 limit 则会由于需要更新大量数据,从而索引失效变成全扫描导致锁表,同时由于修改大量的索引,产生大量的日志,导致这个更新会有很长时间,锁表锁很长时间,期间这个表无法处理线上业务。
  • 由于产生了大量 binlog 导致主从同步压力变大
  • 由于标记删除产生了大量的存储碎片。由于 MySQL 是按页加载数据,这些存储碎片不仅大量增加了随机读取的次数,并且让页命中率降低,导致页交换增多
  • 由于产生了大量日志,我们可以看到这张表的占用空间大大增高。


解决方案


我们很容易想到,在 delete 后加上 limit 限制控制其数量,这个数量让他会走索引,从而不会锁整个表


但是,存储碎片,主从同步,占用空间的问题并没有解决。可以在删除完成后,通过如下语句,重建表


alter table 你的表 engine=InnoDB, ALGORITHM=INPLACE, LOCK=NONE;

注意这句话其实就是重建你的表,虽然你的表的引擎已经是 innodb 了,加上后面的, ALGORITHM=INPLACE, LOCK=NONE 可以不用锁表就重建表。


还有一种方案是,新建一张同样结构的表,在原有表上加上触发器


create trigger person_trigger_update AFTER UPDATE on 原有表 for each row 
begin set @x = "trigger UPDATE";
Replace into 新表 SELECT * from 原有表 where 新表.id = 原有表.id;
END IF;
end;


这样可以保证线上业务有新数据会同步。之后,将所有企业类型的数据,插入新表,同时如果已存在则证明发生了更新同步就不插入。个体户数据由于业务变化,并不在这个表上更新,所以这样通过了无表锁同步实现了大表的数据清理

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
13天前
|
Java 关系型数据库 MySQL
SpringBoot 通过集成 Flink CDC 来实时追踪 MySql 数据变动
通过详细的步骤和示例代码,您可以在 SpringBoot 项目中成功集成 Flink CDC,并实时追踪 MySQL 数据库的变动。
106 43
|
5天前
|
存储 SQL 关系型数据库
MySQL底层概述—4.InnoDB数据文件
本文介绍了InnoDB表空间文件结构及其组成部分,包括表空间、段、区、页和行。表空间是最高逻辑层,包含多个段;段由若干个区组成,每个区包含64个连续的页,页用于存储多条行记录。文章还详细解析了Page结构,分为通用部分(文件头与文件尾)、数据记录部分和页目录部分。此外,文中探讨了行记录格式,包括四种行格式(Redundant、Compact、Dynamic和Compressed),重点介绍了Compact行记录格式及其溢出机制。最后,文章解释了不同行格式的特点及应用场景,帮助理解InnoDB存储引擎的工作原理。
MySQL底层概述—4.InnoDB数据文件
|
2月前
|
存储 关系型数据库 MySQL
mysql怎么查询longblob类型数据的大小
通过本文的介绍,希望您能深入理解如何查询MySQL中 `LONG BLOB`类型数据的大小,并结合优化技术提升查询性能,以满足实际业务需求。
175 6
|
3月前
|
存储 Oracle 关系型数据库
【赵渝强老师】MySQL InnoDB的数据文件与重做日志文件
本文介绍了MySQL InnoDB存储引擎中的数据文件和重做日志文件。数据文件包括`.ibd`和`ibdata`文件,用于存放InnoDB数据和索引。重做日志文件(redo log)确保数据的可靠性和事务的持久性,其大小和路径可由相关参数配置。文章还提供了视频讲解和示例代码。
200 11
【赵渝强老师】MySQL InnoDB的数据文件与重做日志文件
|
2月前
|
SQL 关系型数据库 MySQL
mysql分页读取数据重复问题
在服务端开发中,与MySQL数据库进行数据交互时,常因数据量大、网络延迟等因素需分页读取数据。文章介绍了使用`limit`和`offset`参数实现分页的方法,并针对分页过程中可能出现的数据重复问题进行了详细分析,提出了利用时间戳或确保排序规则绝对性等解决方案。
118 1
|
3月前
|
缓存 NoSQL 关系型数据库
Redis和Mysql如何保证数据⼀致?
在项目中,为了解决Redis与Mysql的数据一致性问题,我们采用了多种策略:对于低一致性要求的数据,不做特别处理;时效性数据通过设置缓存过期时间来减少不一致风险;高一致性但时效性要求不高的数据,利用MQ异步同步确保最终一致性;而对一致性和时效性都有高要求的数据,则采用分布式事务(如Seata TCC模式)来保障。
86 14
|
3月前
|
关系型数据库 MySQL 数据库
GBase 数据库如何像MYSQL一样存放多行数据
GBase 数据库如何像MYSQL一样存放多行数据
|
3月前
|
SQL 前端开发 关系型数据库
SpringBoot使用mysql查询昨天、今天、过去一周、过去半年、过去一年数据
SpringBoot使用mysql查询昨天、今天、过去一周、过去半年、过去一年数据
99 9
|
3月前
|
SQL 关系型数据库 MySQL
定时任务频繁插入数据导致锁表问题 -> 查询mysql进程
定时任务频繁插入数据导致锁表问题 -> 查询mysql进程
79 1
|
3月前
|
SQL 关系型数据库 MySQL
mysql数据误删后的数据回滚
【11月更文挑战第1天】本文介绍了四种恢复误删数据的方法:1. 使用事务回滚,通过 `pymysql` 库在 Python 中实现;2. 使用备份恢复,通过 `mysqldump` 命令备份和恢复数据;3. 使用二进制日志恢复,通过 `mysqlbinlog` 工具恢复特定位置的事件;4. 使用延迟复制从副本恢复,通过停止和重启从库复制来恢复数据。每种方法都有详细的步骤和示例代码。
708 2