CVPR2022 | 可精简域适应

简介: 背景深度神经网络通常对离线采集的图像(标记的源数据)进行训练,然后嵌入到边缘设备中,以测试从新场景中采集的图像(未标记的目标数据)。在实践中,这种模式由于域转移而降低了网络性能。近年来,越来越多的研究者对无监督领域适应(UDA)进行了深入研究,以解决这一问题。Vanilla UDA旨在将源数据和目标数据对齐到联合表示空间中,以便根据源数据训练的模型可以很好地推广到目标数据。但是,学术研究与工业需求之间仍然存在差距:大多数现有的UDA方法仅使用固定的神经结构进行权重自适应,但无法有效地满足现实世界应用中各种设备的要求。

背景
深度神经网络通常对离线采集的图像(标记的源数据)进行训练,然后嵌入到边缘设备中,以测试从新场景中采集的图像(未标记的目标数据)。在实践中,这种模式由于域转移而降低了网络性能。近年来,越来越多的研究者对无监督领域适应(UDA)进行了深入研究,以解决这一问题。
Vanilla UDA旨在将源数据和目标数据对齐到联合表示空间中,以便根据源数据训练的模型可以很好地推广到目标数据。但是,学术研究与工业需求之间仍然存在差距:大多数现有的UDA方法仅使用固定的神经结构进行权重自适应,但无法有效地满足现实世界应用中各种设备的要求。
以图1所示的广泛使用的应用场景为例,在这种情况下,普通UDA方法必须反复训练一系列具有不同容量和体系结构的模型,以满足具有不同计算预算的设备的需求,这既昂贵又耗时。
为了解决上述问题,作者提出了Slimmable Domain Adaption(SlimDA),即只对模型进行一次训练,这样就可以灵活地从中抽取具有不同容量和体系结构的定制模型,以满足不同计算预算的设备的需求。

图1 SlimDA
当纤细的神经网络满足无监督领域自适应时,仍然存在两个挑战:
1)权重自适应:如何同时提高模型库中所有模型的自适应性能。
2) 架构适应:给定特定的计算预算,如何在未标记的目标数据上搜索适当的模型。
对于第一个挑战,作者提出了随机集成蒸馏(SEED)来交互模型库中的模型,以抑制模型内自适应对未标记目标数据的不确定性。表1显示了SEED和传统知识蒸馏之间的差异。

表1 传统知识蒸馏(CKD)与随机集成蒸馏(SEED)
对于第二个挑战,作者提出了一种无监督的绩效评估指标,可以缓解候选模型和锚模型之间的输出差异。度量值越小,假设性能越好。
贡献
1.提出了SlimDA,一个“一劳永逸”的框架,以共同适应资源有限设备的适应性能和计算预算。
2.提出了SEED,能够同时提高模型库中所有模型的适应性能。
3.设计了一个优化分离的三分类器来调节模型内适应和模型间交互之间的优化。
4.提出了一种无监督的性能评估指标,以促进架构适应。
相关方法
1.无监督域自适应(UDA)
现有的UDA方法旨在提高模型在未标记目标域上的性能。在过去几年中,提出了基于差异的方法和对抗性优化方法,通过域对齐来解决这个问题。SymNet开发了一种双分类器体系结构,以促进类别级领域混淆。最近,Li等人试图学习最佳架构,以进一步提高目标域的性能,这证明了网络架构对UDA的重要性。这些UDA方法侧重于实现在目标域上具有更好性能的特定模型。

  1. 神经架构搜索(NAS)

NAS方法旨在通过强化学习、进化方法、基于梯度的方法等自动搜索最优架构。最近,一次性方法非常流行,因为只需要训练一个超级网络,并且同时优化了各种架构的多个权重共享子网络。这样,就可以从模型库中搜索最优的网络结构。在本文中,作者强调UDA对于NAS来说是一个未被注意到但意义重大的场景,因为它们可以在无监督的情况下合作优化特定于场景的轻量级体系结构。
3.跨域网络压缩
Chen等人提出了一种跨域非结构化剪枝方法。Y u等人采用MMD来最小化域差异,并在基于泰勒的策略中修剪过滤器,Yang等人专注于压缩图神经网络。Feng等人在通道修剪网络和全尺寸网络之间进行对抗性训练。然而,现有方法的性能仍有很大的改进空间。此外,他们的方法不够灵活,无法在不同的资源约束下获得众多的最优模型。
方法

  1. SlimDA框架

在可精简的神经网络中已经证明,具有不同宽度(即层通道)的众多网络可以耦合到权重共享模型库中,并同时进行优化。从一个基线开始,在此基线中,SymNet直接与纤细的神经网络合并。
为了简单起见,SymNet的总体目标统一为Ldc。在每次训练迭代中,可以从模型库{(Fj,Csj,Ctj)}mj=1中随机抽样几个模型∈(F,Cs,Ct),命名为模型批次,其中m表示模型批次大小。此处(F、Cs、Ct)可被视为最大模型,其余模型可通过权重共享的方式从中采样。
为了确保模型库能够得到充分的训练,应在每次训练迭代中对最大和最小的模型进行采样,并将其构成模型批的一部分。

该基线可被视为Eqn的两个交替过程。为了鼓励上述基线中的模型间交互,作者提出了SlimDA框架,如图2所示。该框架由随机集成蒸馏(SEED)和优化分离三分类器(OSTC)设计组成。
SEED旨在利用模型库中的互补知识进行多模型交互。Cs和Ct分类器上的红色箭头表示领域混淆训练Ldc和模型库中的知识聚合。Ca分类器上的紫色箭头表示种子优化Lseed。

图2 SlimDA框架

  1. 随机集成蒸馏(SEED)

SEED旨在利用模型库中的互补知识进行多模型交互。模型库中的不同模型可以直观地学习有关未标记目标数据的补充知识。受带有模型扰动的贝叶斯学习的启发,作者通过蒙特卡罗采样利用模型库中的模型来抑制未标记目标数据的不确定性。
模型置信度定义:

锐化函数以诱导种子训练期间的隐式熵最小化:

  1. 优化分离三分类器(OSTC)

其中前两个用于域混淆训练,最后一个用于接收随机聚合的知识以进行蒸馏。蒸馏损失公式如下:

  1. 无监督性能评估指标

无监督绩效评估指标(UPEM):

相关文章
|
7月前
|
开发框架 网络协议 .NET
【网络奇缘】- 计算机网络|分层结构|深入学习ISO模型
【网络奇缘】- 计算机网络|分层结构|深入学习ISO模型
104 0
|
6月前
|
JavaScript 前端开发
模块化(Modularization)是一种软件工程实践,旨在将大型、复杂的系统分割成一系列松散耦合、功能独立且具有明确定义接口的模块。
模块化简化复杂软件,通过划分独立模块提升代码可读性、维护性、复用性和扩展性。JavaScript模块化有多种方式:CommonJS(Node.js,`require()`/`module.exports`),AMD(RequireJS,异步加载,`define()`/`require()`),以及ES6 Modules(官方标准,`import`/`export`)。早期还有闭包和IIFE等非正式方法。现代工具如Webpack和Rollup处理兼容性问题,使模块化代码能在各种环境中运行。
87 0
|
消息中间件 前端开发 小程序
DDD实战之五:战略设计之上下文映射和系统分层架构(下)
DDD实战之五:战略设计之上下文映射和系统分层架构(下)
DDD实战之五:战略设计之上下文映射和系统分层架构(下)
|
设计模式 搜索推荐 领域建模
DDD领域驱动设计实战(一)-领域模型、子域、核心域、通用域和支撑域等基本概念
DDD领域驱动设计实战(一)-领域模型、子域、核心域、通用域和支撑域等基本概念
1047 0
|
机器学习/深度学习 Oracle 算法
利用概率学实现组合优化层,新研究构建Julia开源包InferOpt.jl
利用概率学实现组合优化层,新研究构建Julia开源包InferOpt.jl
119 0
|
前端开发 小程序 机器人
DDD实战之五:战略设计之上下文映射和系统分层架构(上)
DDD实战之五:战略设计之上下文映射和系统分层架构(上)
DDD实战之五:战略设计之上下文映射和系统分层架构(上)
|
JSON 前端开发 数据格式
再议DDD分层
之前整理过《DDD分层》[1] 以及《分层架构》[2] 最近看网友讨论,整理一些有亮点的地方 现在分层架构+整洁架构似乎是个万金油组合了 之前DDD的标准分层结构:
310 0
再议DDD分层
|
存储 监控 BI
SAP QM 模块的弊端?
SAP QM 模块的弊端?
|
内存技术 网络架构 Go
带你读《计算机体系结构:量化研究方法(英文版·原书第6版)》之二: Memory Hierarchy Design
本书堪称计算机系统结构学科的“圣经”,是计算机设计领域学生和实践者的必读经典。本书系统地介绍了计算机系统的设计基础、存储器层次结构设计、指令级并行及其开发、数据级并行、GPU体系结构、线程级并行和仓库级计算机等。本书内容丰富,既介绍了当今计算机体系结构的研究成果,也引述了许多计算机系统设计开发方面的实践经验。另外,各章结尾还附有大量的习题和参考文献。