类的入门<C++入门>(跑路人笔记)(2)

简介: 类的入门<C++入门>(跑路人笔记)

类的6个默认生成函数

类如果是个空类我们的编译器,也会生成6个默认的函数并在符合条件的情况下自己调用.这些函数包括

构造函数,析构函数,拷贝构造,赋值重载,两个取地址重载

这6个函数都是我们可以进行改造的并且在使用的时候编译器会自己调用,非常舒服.


image.png


构造函数

比如我们现在创建了一个日期型类,我们想对其进行初始化,但是如果我们只是写了个初始化的函数我们还需要每次使用都调用,非常不方便.


而我们的构造函数作为一个特殊的成员函数,名字与类名相同,创建类类型对象时由编译器自动调用,保证每个数据成员都有一个合适的初始值,并且在对象的生命周期内只调用一次。



值得注意的是,虽然名字叫构造函数但是他跟对象实例化构造没啥关系,构造函数就只管给成员附上值.


特性

函数名与类名相同。


无返回值。 (且不是void而是没有返回的类型)


对象实例化时编译器自动调用对应的构造函数。


构造函数可以重载。


因为可以重载所以可以创建多个来方便我们使用


在类被其他类引用是构建函数是会被调用.


class date
{
public:
    //构造函数
  date(int year = 2002, int month = 8, int day = 26)
  {
    _year = year;
    _month = month;
    _day = day;
  }
    //打印函数
  void Print()
  {
    cout << _year << "_" << _month << "_" << _day << endl;
  }
private:
  int _year;
  int _month;
  int _day;
};
int main()
{
  date a;
  a.Print();
  return 0;
}

上面代码实现的结果如下图:


image.png


我们这样创建的构造函数是可以传参的


传参形势如下:

image.png



上面的构造函数我们使用了全缺省,但是如果我们不使用全缺省会发生什么呢?


我们将构造函数改成下面形势


image.png


改成上面形势后就会报下面的错误说我们没有默认构造函数使用.


那么什么可以成为默认构造函数呢?



image.png


[第五点介绍](# 特性)第五点的意思直接看图吧=.=


首先建立一个测试类并搭建好他的构建函数


image.png


在另一个类中使用测试类


image.png


来看看我们测试类的构造函数有没有被调用


image.png


调用了.


默认构造函数

直接告诉大家: 只有全缺省,无参,编译器自动生成的可以做默认构造函数,一个类没有默认构造函数并且没有传参的话是实例化出对象的.


但是如果没有默认构造函数,只要传参得当也是可以实例化出对象的.


比如下面的半缺省.



image.png

image.png



不过我们在搭建默认构造函数的时候还是使用全缺省较好.


而且全缺省的函数和无参不能同时出现,不然我们在使用的时候编译器无法识别.


注意: 我们类成员变量在取名的时候最后前面加上_(不同公司规定不同,反正最好不要直接使用对应名称如year,不然可能会出现以下情况)


image.png



因为我们的编译器的this指针是编译器自己调用的,并不是十分智能,所以我们最好还是在前面加上_或者在其他地方加上标识.


也可以用this指针来弄,不过给人感觉怪怪的=.=


析构函数

概念


析构函数也不是将类内成员都销毁那是编译器干的事情,析构函数是在对象的生命结束要被销毁的时候自动调用的函数,比如我们的栈类要向堆区要空间,我们就可以在此处进行归还


特征


析构函数名是在类名前加上字符 ~.

无参数无返回值.

一个类有且只有一个析构函数。若未显式定义,系统会自动生成默认的析构函数.

对象生命周期结束时,C++编译系统系统自动调用析构函数.

在当类一中有其他类的时候,类一的对象在被销毁前会调用其他类的析构函数.

来个例子看看吧

class Stack
{
public:
  //构造函数
  Stack()
  {
    _data = (int*)malloc(sizeof(int) * 4);
    _top = 0;
    _capacity = 4;
  }
  //析构函数
  ~Stack()
  {
    free(_data);
    _top = 0;
    _capacity = 0;
  }
private:
  int* _data;
  int _top;
  int _capacity;
};
相关文章
|
4月前
|
人工智能 机器人 编译器
c++模板初阶----函数模板与类模板
class 类模板名private://类内成员声明class Apublic:A(T val):a(val){}private:T a;return 0;运行结果:注意:类模板中的成员函数若是放在类外定义时,需要加模板参数列表。return 0;
94 0
|
4月前
|
存储 编译器 程序员
c++的类(附含explicit关键字,友元,内部类)
本文介绍了C++中类的核心概念与用法,涵盖封装、继承、多态三大特性。重点讲解了类的定义(`class`与`struct`)、访问限定符(`private`、`public`、`protected`)、类的作用域及成员函数的声明与定义分离。同时深入探讨了类的大小计算、`this`指针、默认成员函数(构造函数、析构函数、拷贝构造、赋值重载)以及运算符重载等内容。 文章还详细分析了`explicit`关键字的作用、静态成员(变量与函数)、友元(友元函数与友元类)的概念及其使用场景,并简要介绍了内部类的特性。
172 0
|
4月前
|
存储 安全 编译器
c++入门
c++作为面向对象的语言与c的简单区别:c语言作为面向过程的语言还是跟c++有很大的区别的,比如说一个简单的五子棋的实现对于c语言面向过程的设计思路是首先分析解决这个问题的步骤:(1)开始游戏(2)黑子先走(3)绘制画面(4)判断输赢(5)轮到白子(6)绘制画面(7)判断输赢(8)返回步骤(2) (9)输出最后结果。但对于c++就不一样了,在下五子棋的例子中,用面向对象的方法来解决的话,首先将整个五子棋游戏分为三个对象:(1)黑白双方,这两方的行为是一样的。(2)棋盘系统,负责绘制画面。
48 0
|
6月前
|
编译器 C++ 容器
【c++11】c++11新特性(上)(列表初始化、右值引用和移动语义、类的新默认成员函数、lambda表达式)
C++11为C++带来了革命性变化,引入了列表初始化、右值引用、移动语义、类的新默认成员函数和lambda表达式等特性。列表初始化统一了对象初始化方式,initializer_list简化了容器多元素初始化;右值引用和移动语义优化了资源管理,减少拷贝开销;类新增移动构造和移动赋值函数提升性能;lambda表达式提供匿名函数对象,增强代码简洁性和灵活性。这些特性共同推动了现代C++编程的发展,提升了开发效率与程序性能。
183 12
|
7月前
|
编译器 C++
类和对象(中 )C++
本文详细讲解了C++中的默认成员函数,包括构造函数、析构函数、拷贝构造函数、赋值运算符重载和取地址运算符重载等内容。重点分析了各函数的特点、使用场景及相互关系,如构造函数的主要任务是初始化对象,而非创建空间;析构函数用于清理资源;拷贝构造与赋值运算符的区别在于前者用于创建新对象,后者用于已存在的对象赋值。同时,文章还探讨了运算符重载的规则及其应用场景,并通过实例加深理解。最后强调,若类中存在资源管理,需显式定义拷贝构造和赋值运算符以避免浅拷贝问题。
|
7月前
|
编译器 C++
类和对象(下)C++
本内容主要讲解C++中的初始化列表、类型转换、静态成员、友元、内部类、匿名对象及对象拷贝时的编译器优化。初始化列表用于成员变量定义初始化,尤其对引用、const及无默认构造函数的类类型变量至关重要。类型转换中,`explicit`可禁用隐式转换。静态成员属类而非对象,受访问限定符约束。内部类是独立类,可增强封装性。匿名对象生命周期短,常用于临时场景。编译器会优化对象拷贝以提高效率。最后,鼓励大家通过重复练习提升技能!
|
8月前
|
编译器 C++ 开发者
【C++篇】深度解析类与对象(下)
在上一篇博客中,我们学习了C++的基础类与对象概念,包括类的定义、对象的使用和构造函数的作用。在这一篇,我们将深入探讨C++类的一些重要特性,如构造函数的高级用法、类型转换、static成员、友元、内部类、匿名对象,以及对象拷贝优化等。这些内容可以帮助你更好地理解和应用面向对象编程的核心理念,提升代码的健壮性、灵活性和可维护性。
|
7月前
|
设计模式 安全 C++
【C++进阶】特殊类设计 && 单例模式
通过对特殊类设计和单例模式的深入探讨,我们可以更好地设计和实现复杂的C++程序。特殊类设计提高了代码的安全性和可维护性,而单例模式则确保类的唯一实例性和全局访问性。理解并掌握这些高级设计技巧,对于提升C++编程水平至关重要。
131 16
|
8月前
|
编译器 C语言 C++
类和对象的简述(c++篇)
类和对象的简述(c++篇)
|
7月前
|
存储 编译器 C++
类和对象(上)(C++)
本篇内容主要讲解了C++中类的相关知识,包括类的定义、实例化及this指针的作用。详细说明了类的定义格式、成员函数默认为inline、访问限定符(public、protected、private)的使用规则,以及class与struct的区别。同时分析了类实例化的概念,对象大小的计算规则和内存对齐原则。最后介绍了this指针的工作机制,解释了成员函数如何通过隐含的this指针区分不同对象的数据。这些知识点帮助我们更好地理解C++中类的封装性和对象的实现原理。