为 Serverless Devs 插上 Terraform 的翅膀,解耦代码和基础设施,实现企业级多环境部署(下)

本文涉及的产品
应用实时监控服务-用户体验监控,每月100OCU免费额度
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
性能测试 PTS,5000VUM额度
简介: 在上篇《为 Serverless Devs 插上 Terraform 的翅膀,实现企业级多环境部署(上)》中,主要介绍了 Serverless Devs 多环境功能的使用,用户读完可能会些疑问,本文会就一些常见问题进行回答。

在上篇《为 Serverless Devs 插上 Terraform 的翅膀,实现企业级多环境部署(上)》中,主要介绍了 Serverless Devs 多环境功能的使用,用户读完可能会些疑问,本文会就一些常见问题进行回答。


Serverless Devs 和 Terraform 的关系


可能有些用户会问,既然你们已经支持了 Terraform,那 Serverless Devs 还有什么作用,是不是直接用 Terraform 就可以了?


Serverless Devs 和 Terraform 的定位还是明显不同的。Serverless Devs 面向应用管理及 DevOps,Terraform 面向云资源,是两个不同的领域,但并不表示不能在某些层面有交集或者不能集成,集成和被集成能力本来就是开源工具是否标准化的一个衡量标准。


Terraform 解决的是云资源的 Provisioning,这个领域是有非常清晰的方法论的。而 Serverless Devs 更应该强调如何使用好云资源,两者的关系可以用几个场景说明:


  • Serverless Devs 更多关注如何把代码或者安装依赖分片上传到 NAS 上,更少关注 VPC/交换机/安全组/NAS 挂载点如何创建出来;

  • Serverless Devs 更多关注如何把文件上传到 OSS,并且自动触发函数完成报表的生成,更少关注 OSS Bucket 如何创建;

  • Serverless Devs 更多关注如何构建代码/镜像、制作 Layer、部署代码、发布版本、灰度放量来构造完整的 CI/CD 体验,更少关注 FC 的网络、日志仓库、ACR 实例如何创建出来;

  • Serverless Devs 更多关注如何远程调试代码,如何登陆到线上实例,如何通过日志以及监控快速发现业务的异常; 


可以看到 Serverless Devs 更加重点关注的是应用运行态以及运维态的操作,这也是 Serverless 架构的工具最重要的使命,但 Serverless Devs 负责的是 Serverless 应用全生命周期管理,必然少不了资源的管理,我们在实践过程中发现,无论是用云产品 SDK 还是 Pulumi 这类 GPLs 都需要投入很大精力在资源生命周期的对接上,这对于组件开发者对接更多云产品来说是非常低效的。而 Terraform 在这方面是最专业的,无论是标准化程度、受认可程度以及资源的丰富度都能很好满足终端用户及开发者的需求,因此才触发 Serverless Devs 和 Terraform 结合这一想法。


Serverless Devs 没有和 Terraform 耦合,相反的是让 Terraform 的 HCL 语言自然的在 Serverless Devs 的组件规范里玩转起来,可以认为是 Serverless Devs 支持多语言的一种能力。对开发者的价值是可以比较低代码的完成基础设施的搭建,把精力投入到和 Serverless 应用生命周期管理相关的开发上,不然就得开发大量的资源 CRUD 代码,这个是非常低效的。


多环境功能和直接用 Terraform 有什么不同


既然多环境部署也走的是 Terraform,那和我直接用 Terraform 部署资源有什么区别?


  • Terraform 是个人版的工具,需要本地管理ak/sk、本地安装 Provider;而多环境是个多租的服务,不需要用户自己来维护这些;


  • 多环境功能重要的是"管理"的能力,比如模板有版本管理能力,当模板发布了新版本并且 IaC 的变更是不兼容的,此时用户如果更新环境会导致未知问题,这种情况下系统会自动识别并且保证存量环境的变更还使用旧版本,不受不兼容变更带来的影响;


  • Terraform 是纯面向资源的编排工具,和应用的关联很弱;而环境和服务、流水线可以天然地形成连接关系,比如通过环境可以感知到资源被哪些服务所使用、服务可以通过环境的授权来获取访问资源的权限、可以在流水线中将服务一次性部署到所有环境上,而这些是 Terraform 做不了的;


  • Terraform 只是多环境实现 IaC 的一个技术选型,未来还计划对接 ROS、Pulumi 等 IaC 项目。


多环境和环境变量的关系


在 CI/CD 中使用环境变量,环境变量中配置 VPC、NAS 啥的,s.yaml 中引用环境变量似乎就可以了,为什么还要造一个环境概念?


环境和环境变量从名字就能区分出定位的差异,环境变量就是一组静态配置,虽然可以将一些资源配置写到环境变量内并在 CI/CD 流水线中引用,但这种方式不具备资源纳管的能力。


而环境是个实体资源,具备基础设施的生命周期管理能力,通过环境可以完成基础设施的增删改查,并可以通过访问控制的方式授予用户的操作权限,更新环境时还可以对接一些安全检查的能力。


通过环境可以让基础设施受到保护,比如当多个服务共享环境时,如果发起环境删除,系统会自动发现环境被其他服务所依赖,此时删除会被拒绝。


只能企业用户使用吗?个人开发者怎么用?


我是个人开发者,不懂 Terraform,文章中各种模板定义看的有点晕,那我还适合用这个功能么?


个人开发者一样适用,但不应该让这部分用户承担写模板的工作,而是由平台提供各种业务场景化的模板,开发者开箱即用,这也是我们后续的主要工作。


对个人用户来说,上阿里云最复杂的某过于 RAM、VPC、ECS、SLB、NAS 这些复杂的概念,学习曲线太长。在 Serverless 架构下这个问题尤为明显,Serverless 宣称低门槛、低成本、低运维,但是上手 Serverless 需要了解一大堆概念,配置一大堆东西,很多用户在这过程中就被"劝退"了,而环境模板和环境可以极大地简化云产品的上手成本,同时又能很安全地操作。举个例子,用户选择一个模板部署环境,就可以一键拉起所有云资源,这样才算是真正的 Serverless。


实现原理


  • 遵循 Serverless Devs 组件开发规范,通过实现一个组件来完成和后端服务的对接


  • 后端服务采用 Serverless + K8s 的架构,通过消息触发函数,来完成模板的渲染以及部署任务的执行


  • 采用 KubeVela[1] 来完成 K8s 资源的管理以及 Terraform 任务的执行


1.png


多环境为什么是组件级的能力而不是 CLI 的能力


Serverless Devs 分为 CLI[2]组件[3]


  • CLI 提供最通用的能力,不依赖任何组件,比如:s init、s config、s verify、--template、--debug


  • 组件提供特定的功能,比如 s deploy、s build、s invoke 这些是 fc 组件的能力 


从 env 命令的通用性以及要解决的问题上看,做到 CLI 内也是合适的。但从实现上看,因为需要一个服务端的控制平面来完成用户资源的部署,出于安全性考虑必须要特定的云服务来完成,所以才通过一个组件来完成。


参考链接:


[1] KubeVela :

https://kubevela.io/


[2] CLI:

https://docs.serverless-devs.com/serverless-devs/command/readme


[3] 阿里云函数计算组件:

https://docs.serverless-devs.com/fc/readme


往期回顾为 Serverless Devs 插上 Terraform 的翅膀,实现企业级多环境部署(上)



极速上手 Serverless


为了让开发者快速定位 Serverless 开发问题,找到对应解决办法,阿里云云原生 Serverless 团队推出 2022《Serverless 开发速查手册》目前已开放下载,我们希望给 Serverless 开发者提供一本能够速查、速懂的工具书,实实在在帮助开发者快速解决 Serverless 开发遇到的实际问题,让大家能够踏踏实实享受 Serverless 带来的技术红利!点击阅读原文,即刻下载手册!


2.jpeg


相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
相关文章
|
13天前
|
人工智能 Java Serverless
阿里云函数计算助力AI大模型快速部署
随着人工智能技术的快速发展,AI大模型已经成为企业数字化转型的重要工具。然而,对于许多业务人员、开发者以及企业来说,探索和利用AI大模型仍然面临诸多挑战。业务人员可能缺乏编程技能,难以快速上手AI模型;开发者可能受限于GPU资源,无法高效构建和部署AI应用;企业则希望简化技术门槛,以更低的成本和更高的效率利用AI大模型。
68 12
|
11天前
|
Serverless 开发工具 开发者
活动实践 | 西游再现,函数计算一键部署 Flux 超写实文生图模型部署
这些图片展示了阿里巴巴云开发者生态的多个方面,包括开发工具、技术文档、社区交流、培训认证等内容,旨在为开发者提供全方位的支持和服务。
|
26天前
|
自然语言处理 搜索推荐 Serverless
基于函数计算部署GPT-Sovits模型实现语音生成
阿里云开发者社区邀请您参加“基于函数计算部署GPT-Sovits模型实现语音生成”活动。完成指定任务即可获得收纳箱一个。活动时间从即日起至2024年12月13日24:00:00。快来报名吧!
|
27天前
|
弹性计算 算法 搜索推荐
活动实践 | 通过函数计算部署ComfyUI以实现一个AIGC图像生成系统
ComfyUI是基于节点工作流稳定扩散算法的新一代WebUI,支持高质量图像生成。用户可通过阿里云函数计算快速部署ComfyUI应用模板,实现个性化定制与高效服务。首次生成图像因冷启动需稍长时间,之后将显著加速。此外,ComfyUI允许自定义模型和插件,满足多样化创作需求。
|
27天前
|
弹性计算 自然语言处理 搜索推荐
活动实践 | 基于函数计算部署GPT-Sovits模型实现语音生成
通过阿里云函数计算部署GPT-Sovits模型,可快速实现个性化声音的文本转语音服务。仅需少量声音样本,即可生成高度仿真的语音。用户无需关注服务器维护与环境配置,享受按量付费及弹性伸缩的优势,轻松部署并体验高质量的语音合成服务。
|
3月前
|
人工智能 自然语言处理 Serverless
阿里云函数计算 x NVIDIA 加速企业 AI 应用落地
阿里云函数计算与 NVIDIA TensorRT/TensorRT-LLM 展开合作,通过结合阿里云的无缝计算体验和 NVIDIA 的高性能推理库,开发者能够以更低的成本、更高的效率完成复杂的 AI 任务,加速技术落地和应用创新。
175 13
|
2天前
|
人工智能 Serverless API
尽享红利,Serverless构建企业AI应用方案与实践
本次课程由阿里云云原生架构师计缘分享,主题为“尽享红利,Serverless构建企业AI应用方案与实践”。课程分为四个部分:1) Serverless技术价值,介绍其发展趋势及优势;2) Serverless函数计算与AI的结合,探讨两者融合的应用场景;3) Serverless函数计算AIGC应用方案,展示具体的技术实现和客户案例;4) 业务初期如何降低使用门槛,提供新用户权益和免费资源。通过这些内容,帮助企业和开发者快速构建高效、低成本的AI应用。
32 12
|
4月前
|
Serverless API 异构计算
函数计算产品使用问题之修改SD模版应用的运行环境
函数计算产品作为一种事件驱动的全托管计算服务,让用户能够专注于业务逻辑的编写,而无需关心底层服务器的管理与运维。你可以有效地利用函数计算产品来支撑各类应用场景,从简单的数据处理到复杂的业务逻辑,实现快速、高效、低成本的云上部署与运维。以下是一些关于使用函数计算产品的合集和要点,帮助你更好地理解和应用这一服务。
|
4月前
|
运维 Serverless 网络安全
函数计算产品使用问题之通过仓库导入应用时无法配置域名外网访问,该如何排查
函数计算产品作为一种事件驱动的全托管计算服务,让用户能够专注于业务逻辑的编写,而无需关心底层服务器的管理与运维。你可以有效地利用函数计算产品来支撑各类应用场景,从简单的数据处理到复杂的业务逻辑,实现快速、高效、低成本的云上部署与运维。以下是一些关于使用函数计算产品的合集和要点,帮助你更好地理解和应用这一服务。
|
2月前
|
存储 消息中间件 人工智能
ApsaraMQ Serverless 能力再升级,事件驱动架构赋能 AI 应用
本文整理自2024年云栖大会阿里云智能集团高级技术专家金吉祥的演讲《ApsaraMQ Serverless 能力再升级,事件驱动架构赋能 AI 应用》。

相关产品

  • 函数计算
  • 下一篇
    DataWorks