重生之我在人间敲代码_Java并发基础_可见性、原子性、有序性问题

简介: 这些年,我们的 CPU、内存、I/O 设备都在不断迭代,不断朝着更快的方向努力。但是,在这个快速发展的过程中,有一个核心矛盾一直存在,就是这三者的速度差异。CPU 和内存的速度差异可以形象地描述为:CPU 是天上一天,内存是地上一年(假设 CPU 执行一条普通指令需要一天,那么 CPU 读写内存得等待一年的时间)。内存和 I/O 设备的速度差异就更大了,内存是天上一天,I/O 设备是地上十年。

这些年,我们的 CPU、内存、I/O 设备都在不断迭代,不断朝着更快的方向努力。但是,在这个快速发展的过程中,有一个核心矛盾一直存在,就是这三者的速度差异。CPU 和内存的速度差异可以形象地描述为:CPU 是天上一天,内存是地上一年(假设 CPU 执行一条普通指令需要一天,那么 CPU 读写内存得等待一年的时间)。内存和 I/O 设备的速度差异就更大了,内存是天上一天,I/O 设备是地上十年。

程序里大部分语句都要访问内存,有些还要访问 I/O,根据木桶理论(一只水桶能装多少水取决于它最短的那块木板),程序整体的性能取决于最慢的操作——读写 I/O 设备,也就是说单方面提高 CPU 性能是无效的。

为了合理利用 CPU 的高性能,平衡这三者的速度差异,计算机体系机构、操作系统、编译程序都做出了贡献,主要体现为:

  • CPU 增加了缓存,以均衡与内存的速度差异;
  • 操作系统增加了进程、线程,以分时复用 CPU,进而均衡 CPU 与 I/O 设备的速度差异;
  • 编译程序优化指令执行次序,使得缓存能够得到更加合理地利用。

现在我们几乎所有的程序都默默地享受着这些成果,但是天下没有免费的午餐,并发程序很多诡异问题的根源也在这里。


缓存导致的可见性问题

在单核时代,所有的线程都是在一颗 CPU 上执行,CPU 缓存与内存的数据一致性容易解决。因为所有线程都是操作同一个 CPU 的缓存,一个线程对缓存的写,对另外一个线程来说一定是可见的。线程 A 和线程 B 都是操作同一个 CPU 里面的缓存,所以线程 A 更新了变量 V 的值,那么线程 B 之后再访问变量 V,得到的一定是 V 的最新值(线程 A 写过的值)。

一个线程对共享变量的修改,另外一个线程能够立刻看到,我们称为可见性

多核时代,每颗 CPU 都有自己的缓存,这时 CPU 缓存与内存的数据一致性就没那么容易解决了,当多个线程在不同的 CPU 上执行时,这些线程操作的是不同的 CPU 缓存。比如线程 A 操作的是 CPU-1 上的缓存,而线程 B 操作的是 CPU-2 上的缓存,很明显,这个时候线程 A 对变量 V 的操作对于线程 B 而言就不具备可见性了。这个就属于硬件程序员给软件程序员挖的“坑”。


线程切换带来的原子性问题

由于 IO 太慢,早期的操作系统就发明了多进程,即便在单核的 CPU 上我们也可以一边听着歌,一边写 Bug,这个就是多进程的功劳。

操作系统允许某个进程执行一小段时间,例如 50 毫秒,过了 50 毫秒操作系统就会重新选择一个进程来执行(我们称为“任务切换”),这个 50 毫秒称为“时间片”。

在一个时间片内,如果一个进程进行一个 IO 操作,例如读个文件,这个时候该进程可以把自己标记为“休眠状态”并出让 CPU 的使用权,待文件读进内存,操作系统会把这个休眠的进程唤醒,唤醒后的进程就有机会重新获得 CPU 的使用权了。

这里的进程在等待 IO 时之所以会释放 CPU 使用权,是为了让 CPU 在这段等待时间里可以做别的事情,这样一来 CPU 的使用率就上来了;此外,如果这时有另外一个进程也读文件,读文件的操作就会排队,磁盘驱动在完成一个进程的读操作后,发现有排队的任务,就会立即启动下一个读操作,这样 IO 的使用率也上来了。

早期的操作系统基于进程来调度 CPU,不同进程间是不共享内存空间的,所以进程要做任务切换就要切换内存映射地址,而一个进程创建的所有线程,都是共享一个内存空间的,所以线程做任务切换成本就很低了。现代的操作系统都基于更轻量的线程来调度,现在我们提到的“任务切换”都是指“线程切换”。

Java 并发程序都是基于多线程的,自然也会涉及到任务切换,也许你想不到,任务切换竟然也是并发编程里诡异 Bug 的源头之一。任务切换的时机大多数是在时间片结束的时候,我们现在基本都使用高级语言编程,高级语言里一条语句往往需要多条 CPU 指令完成,例如count += 1,至少需要三条 CPU 指令。

  • 指令 1:首先,需要把变量 count 从内存加载到 CPU 的寄存器;
  • 指令 2:之后,在寄存器中执行 +1 操作;
  • 指令 3:最后,将结果写入内存(缓存机制导致可能写入的是 CPU 缓存而不是内存)。

操作系统做任务切换,可以发生在任何一条CPU 指令执行完,是的,是 CPU 指令,而不是高级语言里的一条语句。对于上面的三条指令来说,我们假设 count=0,如果线程 A 在指令 1 执行完后做线程切换,线程 A 和线程 B 按照下图的序列执行,那么我们会发现两个线程都执行了 count+=1 的操作,但是得到的结果不是我们期望的 2,而是 1。

我们潜意识里面觉得 count+=1 这个操作是一个不可分割的整体,就像一个原子一样,线程的切换可以发生在 count+=1 之前,也可以发生在 count+=1 之后,但就是不会发生在中间。我们把一个或者多个操作在 CPU 执行的过程中不被中断的特性称为原子性。CPU 能保证的原子操作是 CPU 指令级别的,而不是高级语言的操作符,这是违背我们直觉的地方。因此,很多时候我们需要在高级语言层面保证操作的原子性。


编译优化带来的有序性问题

那并发编程里还有没有其他有违直觉容易导致诡异 Bug 的技术呢?有的,就是有序性。顾名思义,有序性指的是程序按照代码的先后顺序执行。编译器为了优化性能,有时候会改变程序中语句的先后顺序,例如程序中:“a=6;b=7;”编译器优化后可能变成“b=7;a=6;”,在这个例子中,编译器调整了语句的顺序,但是不影响程序的最终结果。不过有时候编译器及解释器的优化可能导致意想不到的 Bug。

在 Java 领域一个经典的案例就是利用双重检查创建单例对象,例如下面的代码:在获取实例 getInstance() 的方法中,我们首先判断 instance 是否为空,如果为空,则锁定 Singleton.class 并再次检查 instance 是否为空,如果还为空则创建 Singleton 的一个实例。

假设有两个线程 A、B 同时调用 getInstance() 方法,他们会同时发现 instance == null ,于是同时对 Singleton.class 加锁,此时 JVM 保证只有一个线程能够加锁成功(假设是线程 A),另外一个线程则会处于等待状态(假设是线程 B);线程 A 会创建一个 Singleton 实例,之后释放锁,锁释放后,线程 B 被唤醒,线程 B 再次尝试加锁,此时是可以加锁成功的,加锁成功后,线程 B 检查 instance == null 时会发现,已经创建过 Singleton 实例了,所以线程 B 不会再创建一个 Singleton 实例。

这看上去一切都很完美,无懈可击,但实际上这个 getInstance() 方法并不完美。问题出在哪里呢?出在 new 操作上,我们以为的 new 操作应该是:

  • 分配一块内存 M;
  • 在内存 M 上初始化 Singleton 对象;
  • 然后 M 的地址赋值给 instance 变量。

但是实际上优化后的执行路径却是这样的:

  • 分配一块内存 M;
  • 将 M 的地址赋值给 instance 变量;
  • 最后在内存 M 上初始化 Singleton 对象。

优化后会导致什么问题呢?我们假设线程 A 先执行 getInstance() 方法,当执行完指令 2 时恰好发生了线程切换,切换到了线程 B 上;如果此时线程 B 也执行 getInstance() 方法,那么线程 B 在执行第一个判断时会发现 instance != null ,所以直接返回 instance,而此时的 instance 是没有初始化过的,如果我们这个时候访问 instance 的成员变量就可能触发空指针异常。


总结

要写好并发程序,首先要知道并发程序的问题在哪里,只有确定了“靶子”,才有可能把问题解决,毕竟所有的解决方案都是针对问题的。并发程序经常出现的诡异问题看上去非常无厘头,但是深究的话,无外乎就是直觉欺骗了我们,只要我们能够深刻理解可见性、原子性、有序性在并发场景下的原理,很多并发 Bug 都是可以理解、可以诊断的

在介绍可见性、原子性、有序性的时候,特意提到缓存导致的可见性问题,线程切换带来的原子性问题,编译优化带来的有序性问题,其实缓存、线程、编译优化的目的和我们写并发程序的目的是相同的,都是提高程序性能。但是技术在解决一个问题的同时,必然会带来另外一个问题,所以在采用一项技术的同时,一定要清楚它带来的问题是什么,以及如何规避

相关文章
|
3月前
|
安全 Java 编译器
揭秘JAVA深渊:那些让你头大的最晦涩知识点,从泛型迷思到并发陷阱,你敢挑战吗?
【8月更文挑战第22天】Java中的难点常隐藏在其高级特性中,如泛型与类型擦除、并发编程中的内存可见性及指令重排,以及反射与动态代理等。这些特性虽强大却也晦涩,要求开发者深入理解JVM运作机制及计算机底层细节。例如,泛型在编译时检查类型以增强安全性,但在运行时因类型擦除而丢失类型信息,可能导致类型安全问题。并发编程中,内存可见性和指令重排对同步机制提出更高要求,不当处理会导致数据不一致。反射与动态代理虽提供运行时行为定制能力,但也增加了复杂度和性能开销。掌握这些知识需深厚的技术底蕴和实践经验。
76 2
|
3月前
|
安全 Java 调度
解锁Java并发编程高阶技能:深入剖析无锁CAS机制、揭秘魔法类Unsafe、精通原子包Atomic,打造高效并发应用
【8月更文挑战第4天】在Java并发编程中,无锁编程以高性能和低延迟应对高并发挑战。核心在于无锁CAS(Compare-And-Swap)机制,它基于硬件支持,确保原子性更新;Unsafe类提供底层内存操作,实现CAS;原子包java.util.concurrent.atomic封装了CAS操作,简化并发编程。通过`AtomicInteger`示例,展现了线程安全的自增操作,突显了这些技术在构建高效并发程序中的关键作用。
69 1
|
11天前
|
存储 设计模式 分布式计算
Java中的多线程编程:并发与并行的深度解析####
在当今软件开发领域,多线程编程已成为提升应用性能、响应速度及资源利用率的关键手段之一。本文将深入探讨Java平台上的多线程机制,从基础概念到高级应用,全面解析并发与并行编程的核心理念、实现方式及其在实际项目中的应用策略。不同于常规摘要的简洁概述,本文旨在通过详尽的技术剖析,为读者构建一个系统化的多线程知识框架,辅以生动实例,让抽象概念具体化,复杂问题简单化。 ####
|
1月前
|
存储 缓存 Java
java基础:IO流 理论与代码示例(详解、idea设置统一utf-8编码问题)
这篇文章详细介绍了Java中的IO流,包括字符与字节的概念、编码格式、File类的使用、IO流的分类和原理,以及通过代码示例展示了各种流的应用,如节点流、处理流、缓存流、转换流、对象流和随机访问文件流。同时,还探讨了IDEA中设置项目编码格式的方法,以及如何处理序列化和反序列化问题。
67 1
java基础:IO流 理论与代码示例(详解、idea设置统一utf-8编码问题)
|
16天前
|
Java 数据库连接 数据库
如何构建高效稳定的Java数据库连接池,涵盖连接池配置、并发控制和异常处理等方面
本文介绍了如何构建高效稳定的Java数据库连接池,涵盖连接池配置、并发控制和异常处理等方面。通过合理配置初始连接数、最大连接数和空闲连接超时时间,确保系统性能和稳定性。文章还探讨了同步阻塞、异步回调和信号量等并发控制策略,并提供了异常处理的最佳实践。最后,给出了一个简单的连接池示例代码,并推荐使用成熟的连接池框架(如HikariCP、C3P0)以简化开发。
35 2
|
1月前
|
Java
【编程进阶知识】揭秘Java多线程:并发与顺序编程的奥秘
本文介绍了Java多线程编程的基础,通过对比顺序执行和并发执行的方式,展示了如何使用`run`方法和`start`方法来控制线程的执行模式。文章通过具体示例详细解析了两者的异同及应用场景,帮助读者更好地理解和运用多线程技术。
26 1
|
2月前
|
安全 Java API
【Java面试题汇总】Java基础篇——String+集合+泛型+IO+异常+反射(2023版)
String常量池、String、StringBuffer、Stringbuilder有什么区别、List与Set的区别、ArrayList和LinkedList的区别、HashMap底层原理、ConcurrentHashMap、HashMap和Hashtable的区别、泛型擦除、ABA问题、IO多路复用、BIO、NIO、O、异常处理机制、反射
【Java面试题汇总】Java基础篇——String+集合+泛型+IO+异常+反射(2023版)
|
2月前
|
Java API 容器
JAVA并发编程系列(10)Condition条件队列-并发协作者
本文通过一线大厂面试真题,模拟消费者-生产者的场景,通过简洁的代码演示,帮助读者快速理解并复用。文章还详细解释了Condition与Object.wait()、notify()的区别,并探讨了Condition的核心原理及其实现机制。
|
3月前
|
存储 Java
Java 中 ConcurrentHashMap 的并发级别
【8月更文挑战第22天】
52 5
|
3月前
|
存储 算法 Java
Java 中的同步集合和并发集合
【8月更文挑战第22天】
44 5