iOS Principle:weak

简介: iOS Principle:weak

方便记忆:


  • 作用:作为一种弱引用属性修饰词,不增加对象的引用计数,也不持有对象,对象消失后,指针自动变成nil
  • 原理:weak 其实是一个 hash(哈希)表,Key:对象的地址,Value:weak 指针的地址数组
  • 底层实现过程
  • 初始化时:runtime会调用objc_initWeak函数,初始化一个新的weak指针指向对象的地址
  • 添加引用时:objc_initWeak函数会调用 objc_storeWeak() 函数, objc_storeWeak() 的作用是更新指针指向,创建对应的弱引用表
  • 释放时:调用clearDeallocating函数,对象地址获取所有weak指针地址的数组,然后遍历这个数组把其中的数据设为nil



引文


之前只是认识到 weak 作为一种弱引用属性修饰词,不增加对象的引用计数,也不持有对象,对象消失后,指针自动变成nil。在ARC环境下,为避免循环引用,往往会把delegate属性用weak修饰。


今天整理一下 weak 的实现原理,先概括的讲 weak 其实是一个 hash(哈希)表,Key 是所指对象的地址,Value 是 weak 指针的地址数组。


顺便发现其实现在想循环引用也挺难的,Xcode会有个提醒,黄黄的挺显眼的...


image.png


实现原理


Runtime维护了一个weak表,用于存储指向某个对象的所有weak指针。weak表其实是一个hash(哈希)表,Key是所指对象的地址,Value是weak指针的地址(这个地址的值是所指对象的地址)数组。


底层的实现大体分为三步:

  • 1.初始化时:runtime会调用objc_initWeak函数,初始化一个新的weak指针指向对象的地址。(给你添个干兄弟)
  • 2.添加引用时:objc_initWeak函数会调用 objc_storeWeak() 函数, objc_storeWeak() 的作用是更新指针指向,创建对应的弱引用表。(给这个干兄弟落个户口,介绍给亲戚朋友)
  • 3.释放时,调用clearDeallocating函数。clearDeallocating函数首先根据对象地址获取所有weak指针地址的数组,然后遍历这个数组把其中的数据设为nil,最后把这个entry从weak表中删除,最后清理对象的记录。(最后等这个干兄弟干完活后,被卸磨杀驴)


分步解析内部实现:


1)初始化时:runtime会调用objc_initWeak函数,objc_initWeak函数会初始化一个新的weak指针指向对象的地址。

NSObject *obj = [[NSObject alloc] init];
id __weak obj1 = obj; // 看好 weak 了


当我们初始化一个weak变量时,runtime会调用 NSObject.mm 中的objc_initWeak函数。这个函数在Clang中的声明如下:

id objc_initWeak(id *object, id value);


objc_initWeak() 方法的实现

id objc_initWeak(id *location, id newObj) {
    // 查看对象实例是否有效
    // 无效对象直接导致指针释放
    if (!newObj) {
        *location = nil;
        return nil;
    }
    // 这里传递了三个 bool 数值
    // 使用 template 进行常量参数传递是为了优化性能
    return storeWeakfalse/*old*/, true/*new*/, true/*crash*/>
    (location, (objc_object*)newObj);
}


可以看出,这个函数仅仅是一个深层函数的调用入口,而一般的入口函数中,都会做一些简单的判断(例如 objc_msgSend 中的缓存判断),这里判断了其指针指向的类对象是否有效,无效直接释放,不再往深层调用函数。否则,object将被注册为一个指向value的__weak对象。


注意:objc_initWeak函数有一个前提条件:就是object必须是一个没有被注册为__weak对象的有效指针。而value则可以是null,或者指向一个有效的对象。

2)添加引用时:objc_initWeak函数会调用 objc_storeWeak() 函数, objc_storeWeak() 的作用是更新指针指向,创建对应的弱引用表。

objc_storeWeak的函数声明如下:


id objc_storeWeak(id *location, id value);

objc_storeWeak 方法的实现:

// HaveOld:     true - 变量有值
//             false - 需要被及时清理,当前值可能为 nil
// HaveNew:     true - 需要被分配的新值,当前值可能为 nil
//             false - 不需要分配新值
// CrashIfDeallocating: true - 说明 newObj 已经释放或者 newObj 不支持弱引用,该过程需要暂停
//             false - 用 nil 替代存储
template bool HaveOld, bool HaveNew, bool CrashIfDeallocating>
static id storeWeak(id *location, objc_object *newObj) {
    // 该过程用来更新弱引用指针的指向
    // 初始化 previouslyInitializedClass 指针
    Class previouslyInitializedClass = nil;
    id oldObj;
    // 声明两个 SideTable
    // ① 新旧散列创建
    SideTable *oldTable;
    SideTable *newTable;
    // 获得新值和旧值的锁存位置(用地址作为唯一标示)
    // 通过地址来建立索引标志,防止桶重复
    // 下面指向的操作会改变旧值
    retry:
    if (HaveOld) {
        // 更改指针,获得以 oldObj 为索引所存储的值地址
        oldObj = *location;
        oldTable = &SideTables()[oldObj];
    } else {
        oldTable = nil;
    }
    if (HaveNew) {
        // 更改新值指针,获得以 newObj 为索引所存储的值地址
        newTable = &SideTables()[newObj];
    } else {
        newTable = nil;
    }
    // 加锁操作,防止多线程中竞争冲突
    SideTable::lockTwoHaveOld, HaveNew>(oldTable, newTable);
    // 避免线程冲突重处理
    // location 应该与 oldObj 保持一致,如果不同,说明当前的 location 已经处理过 oldObj 可是又被其他线程所修改
    if (HaveOld  &&  *location != oldObj) {
        SideTable::unlockTwoHaveOld, HaveNew>(oldTable, newTable);
        goto retry;
    }
    // 防止弱引用间死锁
    // 并且通过 +initialize 初始化构造器保证所有弱引用的 isa 非空指向
    if (HaveNew  &&  newObj) {
        // 获得新对象的 isa 指针
        Class cls = newObj->getIsa();
        // 判断 isa 非空且已经初始化
        if (cls != previouslyInitializedClass  &&
        !((objc_class *)cls)->isInitialized()) {
            // 解锁
            SideTable::unlockTwoHaveOld, HaveNew>(oldTable, newTable);
            // 对其 isa 指针进行初始化
            _class_initialize(_class_getNonMetaClass(cls, (id)newObj));
            // 如果该类已经完成执行 +initialize 方法是最理想情况
            // 如果该类 +initialize 在线程中
            // 例如 +initialize 正在调用 storeWeak 方法
            // 需要手动对其增加保护策略,并设置 previouslyInitializedClass 指针进行标记
            previouslyInitializedClass = cls;
            // 重新尝试
            goto retry;
        }
    }
    // ② 清除旧值
    if (HaveOld) {
        weak_unregister_no_lock(&oldTable->weak_table, oldObj, location);
    }
    // ③ 分配新值
    if (HaveNew) {
        newObj = (objc_object *)weak_register_no_lock(&newTable->weak_table,
        (id)newObj, location,
        CrashIfDeallocating);
        // 如果弱引用被释放 weak_register_no_lock 方法返回 nil
        // 在引用计数表中设置若引用标记位
        if (newObj  &&  !newObj->isTaggedPointer()) {
            // 弱引用位初始化操作
            // 引用计数那张散列表的weak引用对象的引用计数中标识为weak引用
            newObj->setWeaklyReferenced_nolock();
        }
        // 之前不要设置 location 对象,这里需要更改指针指向
        *location = (id)newObj;
    }
    else {
    // 没有新值,则无需更改
    }
    SideTable::unlockTwoHaveOld, HaveNew>(oldTable, newTable);
    return (id)newObj;
}


拆分解析上述代码

① SideTable

主要用于管理对象的引用计数和 weak 表。在 NSObject.mm 中声明其数据结构:


struct SideTable {
    // 保证原子操作的自旋锁
    spinlock_t slock;
    // 引用计数的 hash 表
    RefcountMap refcnts;
    // weak 引用全局 hash 表
    weak_table_t weak_table;
}


对于 slock 和 refcnts 两个成员不用多说,第一个是为了防止竞争选择的自旋锁,第二个是协助对象的 isa 指针的 extra_rc 共同引用计数的变量(对于对象结果,在今后的文中提到)。这里主要看 weak 全局 hash 表的结构与作用。


② weak 表


weak表是一个弱引用表,实现为一个weak_table_t结构体,存储了某个对象相关的所有的弱引用信息。


在objc-weak.h中其定义如下

struct weak_table_t {
    // 保存了所有指向指定对象的 weak 指针
    weak_entry_t *weak_entries;
    // 存储空间
    size_t    num_entries;
    // 参与判断引用计数辅助量
    uintptr_t mask;
    // hash key 最大偏移值
    uintptr_t max_hash_displacement;
};


这是一个全局弱引用hash表。使用不定类型对象的地址作为 key ,用 weak_entry_t 类型结构体对象作为 value 。其中的 weak_entries 成员,从字面意思上看,即为弱引用表入口。其实现也是这样的。


其中weak_entry_t是存储在弱引用表中的一个内部结构体,它负责维护和存储指向一个对象的所有弱引用hash表。其定义如下:


typedef objc_object ** weak_referrer_t;
struct weak_entry_t {
    DisguisedPtrobjc_object> referent;
    union {
        struct {
            weak_referrer_t *referrers;
            uintptr_t        out_of_line : 1;
            uintptr_t        num_refs : PTR_MINUS_1;
            uintptr_t        mask;
            uintptr_t        max_hash_displacement;
        };
        struct {
            // out_of_line=0 is LSB of one of these (don't care which)
            weak_referrer_t  inline_referrers[WEAK_INLINE_COUNT];
        };
    }
}


在 weak_entry_t 的结构中,DisguisedPtr referent 是对泛型对象的指针做了一个封装,通过这个泛型类来解决内存泄漏的问题。从注释中写 out_of_line 成员为最低有效位,当其为0的时候, weak_referrer_t 成员将扩展为多行静态 hash table。


其实其中的 weak_referrer_t 是二维 objc_object 的别名,通过一个二维指针地址偏移,用下标作为 hash 的 key,做成了一个弱引用散列。


out_of_line 的值通常情况下是等于零的,所以弱引用表总是一个 objc_objective 指针二维数组。一维 objc_objective 指针可构成一张弱引用散列表,通过第三纬度实现了多张散列表,并且表数量为 WEAK_INLINE_COUNT 。


StripedMap 是一个模板类,在这个类中有一个 array 成员,用来存储 PaddedT 对象,并且其中对于 [] 符的重载定义中,会返回这个 PaddedT 的 value 成员,这个 value 就是我们传入的 T 泛型成员,也就是 SideTable 对象。


在 array 的下标中,这里使用了 indexForPointer 方法通过位运算计算下标,实现了静态的 Hash Table。而在 weak_table 中,其成员 weak_entry 会将传入对象的地址加以封装起来,并且其中也有访问全局弱引用表的入口。


image.png


旧对象解除注册操作 weak_unregister_no_lock

该方法主要作用是将旧对象在 weak_table 中接触 weak 指针的对应绑定。根据函数名,称之为解除注册操作。从源码中,可以知道其功能就是从 weak_table 中接触 weak 指针的绑定。而其中的遍历查询,就是针对于 weak_entry 中的多张弱引用散列表。

新对象添加注册操作 weak_register_no_lock


这一步与上一步相反,通过 weak_register_no_lock 函数把心的对象进行注册操作,完成与对应的弱引用表进行绑定操作。

③ 初始化弱引用对象流程一览


弱引用的初始化,从上文的分析中可以看出,主要的操作部分就在弱引用表的取键、查询散列、创建弱引用表等操作,可以总结出如下的流程图:


6ae340e8985f4ab9a94b2af45c2d6c1a.png



这个图中省略了很多情况的判断,但是当声明一个 weak 会调用上图中的这些方法。当然, storeWeak 方法不仅仅用在 weak 的声明中,在 class 内部的操作中也会常常通过该方法来对 weak 对象进行操作。


3)释放时,调用clearDeallocating函数。clearDeallocating函数首先根据对象地址获取所有weak指针地址的数组,然后遍历这个数组把其中的数据设为nil,最后把这个entry从weak表中删除,最后清理对象的记录。


当weak引用指向的对象被释放时,又是如何去处理weak指针的呢?当释放对象时,其基本流程如下:


  • 1、调用objc_release
  • 2、因为对象的引用计数为0,所以执行dealloc
  • 3、在dealloc中,调用了_objc_rootDealloc函数
  • 4、在_objc_rootDealloc中,调用了object_dispose函数
  • 5、调用objc_destructInstance
  • 6、最后调用objc_clear_deallocating

重点看对象被释放时调用的objc_clear_deallocating函数。


void objc_clear_deallocating(id obj) {
    assert(obj);
    assert(!UseGC);
    if (obj->isTaggedPointer()) return;
    obj->clearDeallocating();
}


也就是调用了clearDeallocating,继续追踪可以发现,它最终是使用了迭代器来取weak表的value,然后调用weak_clear_no_lock,然后查找对应的value,将该weak指针置空,weak_clear_no_lock函数的实现如下:


/**
* Called by dealloc; nils out all weak pointers that point to the
* provided object so that they can no longer be used.
*
* @param weak_table
* @param referent The object being deallocated.
*/
void weak_clear_no_lock(weak_table_t *weak_table, id referent_id) {
    objc_object *referent = (objc_object *)referent_id;
    weak_entry_t *entry = weak_entry_for_referent(weak_table, referent);
    if (entry == nil) {
        /// XXX shouldn't happen, but does with mismatched CF/objc
        //printf("XXX no entry for clear deallocating %p\n", referent);
        return;
    }
    // zero out references
    weak_referrer_t *referrers;
    size_t count;
    if (entry->out_of_line) {
        referrers = entry->referrers;
        count = TABLE_SIZE(entry);
    }
    else {
        referrers = entry->inline_referrers;
        count = WEAK_INLINE_COUNT;
    }
    for (size_t i = 0; i < count; ++i) {
        objc_object **referrer = referrers[i];
        if (referrer) {
            if (*referrer == referent) {
                *referrer = nil;
            }
            else if (*referrer) {
                _objc_inform("__weak variable at %p holds %p instead of %p. "
                "This is probably incorrect use of "
                "objc_storeWeak() and objc_loadWeak(). "
                "Break on objc_weak_error to debug.\n",
                referrer, (void*)*referrer, (void*)referent);
                objc_weak_error();
            }
        }
    }
    weak_entry_remove(weak_table, entry);
}

objc_clear_deallocating 实现如下

  • 1、从weak表中获取废弃对象的地址为键值的记录
  • 2、将包含在记录中的所有附有 weak修饰符变量的地址,赋值为nil
  • 3、将weak表中该记录删除
  • 4、从引用计数表中删除废弃对象的地址为键值的记录

注释:哈希表最大的优点就是把数据的存储和查找消耗的时间大大降低,几乎可以看成是常数时间;而代价仅仅是消耗比较多的内存。然而在当前可利用内存越来越多的情况下,用空间换时间的做法是值得的。另外,编码比较容易也是它的特点之一。

以上原理解析文章来源:http://www.cocoachina.com/ios/20170328/18962.html




目录
相关文章
|
iOS开发
iOS Principle:CGAffineTransform
iOS Principle:CGAffineTransform
187 0
iOS Principle:CGAffineTransform
|
安全 Unix API
iOS Principle:CALayer(下)
iOS Principle:CALayer(下)
178 0
iOS Principle:CALayer(下)
|
iOS开发
iOS Principle:CALayer(中)
iOS Principle:CALayer(中)
155 0
iOS Principle:CALayer(中)
|
API C语言 iOS开发
iOS Principle:CALayer(上)
iOS Principle:CALayer(上)
184 0
iOS Principle:CALayer(上)
|
存储 iOS开发
iOS Principle:Notification(下)
iOS Principle:Notification(下)
124 0
iOS Principle:Notification(下)
|
设计模式 iOS开发
iOS Principle:Notification(上)
iOS Principle:Notification(上)
137 0
iOS Principle:Notification(上)
|
Web App开发 JSON 移动开发
iOS Principle:ReactNative(下)
iOS Principle:ReactNative(下)
192 0
iOS Principle:ReactNative(下)
|
移动开发 前端开发 JavaScript
iOS Principle:ReactNative(中)
iOS Principle:ReactNative(中)
128 0
iOS Principle:ReactNative(中)
|
存储 API iOS开发
iOS Principle:Block(下)
iOS Principle:Block(下)
140 0
iOS Principle:Block(下)
|
C语言 iOS开发 C++
iOS Principle:Block(上)
iOS Principle:Block(上)
122 0
iOS Principle:Block(上)