一日一技:实现有过期时间的LRU缓存

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
简介: 一日一技:实现有过期时间的LRU缓存

一日一技:实现函数调用结果的 LRU 缓存一文中,我们提到Python自带的LRU缓存lru_cache。通过这个装饰器可以非常轻松地实现缓存。


现在我们考虑下面这个应用场景:MongoDB中有100对id-用户名的对应关系,我从Redis中持续不断读取id,如果id能在MongoDB中找到对应关系,那么就把对应的用户名打印出来。如果找不到对应关系,那么就把这个id丢弃。


为了防止频繁读取MongoDB,我在程序开始的时候直接读取这一百对对应关系,并存为字典:


import pymongo
import redis
client = redis.Redis()
handler = pymongo.MongoClient().weibo.id_name_map
def read_id_name_map():
    id_name = {}
    for row in handler.find():
        id_name[row['id']] = row['name']
    return id_name
id_name_map = read_id_name_map()
while True:
    data = client.blpop('weibo_id')
    user_id = data[1].decode()
    if user_id in id_name_map:
        print(id_name_map[user_id])


大家可以思考一下,上面这段代码有没有什么问题。然后继续看后面。


如果我现在需要再增加100个id-用户名的对应关系怎么办?


由于这个程序运行以后就一直阻塞式地读取Redis,不会停止,所以整个过程只会读取一次MongoDB。后面即使我向MongoDB中添加了新的对应关系,只要程序不重启,就无法读取到新的对应关系。


肯定有同学想到,在while循环里面增加一个计时器,每x分钟就重新调用一下


read_id_name_map()函数,更新对应关系。


不过今天我们要讲的是另一个更有创意的办法,使用lru_cache来实现。


对于这个例子来说,lru_cache的maxsize参数只需要设置为1,因为只需要存放1份对应关系即可。那么我们如何做到,比如每10分钟更新一次呢?我们知道,在使用lru_cache时,如果调用同一个函数,并且传入的参数相同,那么从第二次开始就会使用缓存。现在我们如何让时间在每10分钟内相同呢?


我们来看现在的时间戳:1578399211.30042

它除以600,值是1578399211.30042 // 600 = 2630665.0。然后我让这个时间戳加5分钟,也就是增加300秒,变成1578399511.30042。这个新的时间戳再除以600,发现结果还是2630665.0。但如果原来的时间戳增加超过10分钟,例如增加了601秒,我们再来看看效果(1578399211.30042 + 601) // 600 = 2630666.0,此时的结果也发生了变化。


利用这个特点,修改一下我们的代码:


import pymongo
import redis
import time
from functools import lru_cache
client = redis.Redis()
handler = pymongo.MongoClient().weibo.id_name_map
@lru_cache(maxsize=1)
def read_id_name_map(_):
    id_name = {}
    for row in handler.find():
        id_name[row['id']] = row['name']
    return id_name
while True:
    data = client.blpop('weibo_id')
    id_name_map = read_id_name_map(time.time() // 600)
    user_id = data[1].decode()
    if user_id in id_name_map:
        print(id_name_map[user_id])


现在,我们直接在while循环内部调用read_id_name_map,如果两次调用的时间间隔小于600秒,那么time.time() // 600的值是相同的,第二次直接使用缓存,也就不会查询MongoDB了。


当时间超过10分钟后,时间戳除以600的值增加了,于是缓存没有命中,进入查询MongoDB的过程,更新id_name_map。实现了有过期时间的LRU缓存。


补充:可能有同学注意到定义read_id_name_map函数的时候,参数我写的是下划线。这是Python 编码规范中建议的一种写法。当一个变量不会被使用,但又需要保留时,就可以用下划线表示。


请关注微信公众号【未闻Code】获取更多精彩文章。

目录
相关文章
|
11月前
|
缓存 算法 数据挖掘
深入理解缓存更新策略:从LRU到LFU
【10月更文挑战第7天】 在本文中,我们将探讨计算机系统中缓存机制的核心——缓存更新策略。缓存是提高数据检索速度的关键技术之一,无论是在硬件还是软件层面都扮演着重要角色。我们会详细介绍最常用的两种缓存算法:最近最少使用(LRU)和最少使用频率(LFU),并讨论它们的优缺点及适用场景。通过对比分析,旨在帮助读者更好地理解如何选择和实现适合自己需求的缓存策略,从而优化系统性能。
336 3
|
5月前
|
缓存 NoSQL Go
【LeetCode 热题100】146:LRU 缓存(详细解析)(Go语言版)
本文详细解析了力扣 146 题——LRU 缓存机制的实现方法。通过结合哈希表与双向链表,确保 `get` 和 `put` 操作均在 O(1) 时间内完成。哈希表用于快速查找,双向链表记录访问顺序,支持最近使用数据的高效更新与淘汰。代码以 Go 语言实现,结构清晰,涵盖核心操作如节点移动、插入与删除。此题为面试高频考点,适用于数据缓存、页面置换等场景,掌握后可加深对缓存策略的理解。
275 4
|
11月前
|
缓存 分布式计算 NoSQL
大数据-47 Redis 缓存过期 淘汰删除策略 LRU LFU 基础概念
大数据-47 Redis 缓存过期 淘汰删除策略 LRU LFU 基础概念
218 2
|
缓存 算法 前端开发
深入理解缓存淘汰策略:LRU和LFU算法的解析与应用
【8月更文挑战第25天】在计算机科学领域,高效管理资源对于提升系统性能至关重要。内存缓存作为一种加速数据读取的有效方法,其管理策略直接影响整体性能。本文重点介绍两种常用的缓存淘汰算法:LRU(最近最少使用)和LFU(最不经常使用)。LRU算法依据数据最近是否被访问来进行淘汰决策;而LFU算法则根据数据的访问频率做出判断。这两种算法各有特点,适用于不同的应用场景。通过深入分析这两种算法的原理、实现方式及适用场景,本文旨在帮助开发者更好地理解缓存管理机制,从而在实际应用中作出更合理的选择,有效提升系统性能和用户体验。
640 1
|
缓存 Python
在Python中,`functools`模块提供了一个非常有用的装饰器`lru_cache()`,它实现了最近最少使用(Least Recently Used, LRU)缓存策略。
在Python中,`functools`模块提供了一个非常有用的装饰器`lru_cache()`,它实现了最近最少使用(Least Recently Used, LRU)缓存策略。
177 10
|
存储 缓存 Java
如何使用泛型在 Java 中编写 LRU 缓存?
【8月更文挑战第22天】
122 0
|
存储 缓存 算法
Python 从零开始实现一个简单的LRU缓存
Python 从零开始实现一个简单的LRU缓存
169 0
|
4月前
|
缓存 NoSQL 关系型数据库
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
|
11天前
|
存储 缓存 NoSQL
Redis专题-实战篇二-商户查询缓存
本文介绍了缓存的基本概念、应用场景及实现方式,涵盖Redis缓存设计、缓存更新策略、缓存穿透问题及其解决方案。重点讲解了缓存空对象与布隆过滤器的使用,并通过代码示例演示了商铺查询的缓存优化实践。
75 1
Redis专题-实战篇二-商户查询缓存
|
4月前
|
缓存 NoSQL Java
Redis+Caffeine构建高性能二级缓存
大家好,我是摘星。今天为大家带来的是Redis+Caffeine构建高性能二级缓存,废话不多说直接开始~
714 0