Python进阶系列(十四)

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: Python进阶系列(十四)

Python/C API


Python/C API可能是被最广泛使用的方法。它不仅简单,而且可以在C代码中操作你的Python对象。

这种方法需要以特定的方式来编写C代码以供Python去调用它。所有的Python对象都被表示为一种叫做PyObject的结构体,并且Python.h头文件中提供了各种操作它的函数。例如,如果PyObject表示为PyListType(列表类型)时,那么我们便可以使用PyList_Size()函数来获取该结构的长度,类似Python中的len(list)函数。大部分对Python原生对象的基础函数和操作在Python.h头文件中都能找到。

示例

编写一个C扩展,添加所有元素到一个Python列表(所有元素都是数字)

来看一下我们要实现的效果,这里演示了用Python调用C扩展的代码

Though it looks like an ordinary python import, the addList module #is implemented

import addList

l = [1,2,3,4,5]
print "Sum of List - " + str(l) + " = " + str(addList.add(l))

上面的代码和普通的Python文件并没有什么分别,导入并使用了另一个叫做addList的Python模块。唯一差别就是这个模块并不是用Python编写的,而是C。

接下来我们看看如何用C编写addList模块,这可能看起来有点让人难以接受,但是一旦你了解了这之中的各种组成,你就可以一往无前了。

//Python.h has all the required function definitions to manipulate the Python #include <Python.h>
//This is the function that is called from your python code
static PyObject* addList_add(PyObject* self, PyObject* args){
PyObject * listObj;
//The input arguments come as a tuple, we parse the args to get //the various
//In this case it's only one list variable, which will now be //referenced
if (! PyArg_ParseTuple( args, "O", &listObj ))
return NULL;
//length of the list
long length = PyList_Size(listObj);
//iterate over all the elements
int i, sum =0;
for (i = 0; i < length; i++) {
//get an element out of the list - the element is also a //python objects
PyObject* temp = PyList_GetItem(listObj, i);
//we know that object represents an integer - so convert it //into C
long elem = PyInt_AsLong(temp);
sum += elem;
}
//value returned back to python code - another python object
//build value here converts the C long to a python integer
return Py_BuildValue("i", sum);
}
//This is the docstring that corresponds to our 'add' function.
static char addList_docs[] ="add( ): add all elements of the list\n";
/* This table contains the relavent info mapping -
<function-name in python module>, <actual-function>,
<type-of-args the function expects>, <docstring associated with the function>
*/
static PyMethodDef addList_funcs[] = {
{"add", (PyCFunction)addList_add, METH_VARARGS, addList_docs},
{NULL, NULL, 0, NULL}
};
/*
addList is the module name, and this is the initialization block of the <desired module name>, <the-info-table>, <module's-docstring>
*/
PyMODINIT_FUNC initaddList(void){
Py_InitModule3("addList", addList_funcs, "Add all ze lists");
}

逐步解释

  1. Python.h头文件中包含了所有需要的类型(Python对象类型的表示)和函数定义(对Python对象的操作)
  2. 接下来我们编写将要在Python调用的函数, 函数传统的命名方式由{模块名}_{函数名}组成,所以我们将其命名为addList_add
  3. 然后填写想在模块内实现函数的相关信息表,每行一个函数,以空行作为结束
  4. 最后的模块初始化块签名为PyMODINIT_FUNC init{模块名}。

函数addList_add接受的参数类型为PyObject类型结构(同时也表示为元组类型,因为Python中万物皆为对象,所以我们先用PyObject来定义)。传入的参数则通过PyArg_ParseTuple()来解析。第一个参数是被解析的参数变量。第二个参数是一个字符串,告诉我们如何去解析元组中每一个元素。字符串的第n个字母正是代表着元组中第n个参数的类型。例如,"i"代表整形,"s"代表字符串类型, "O"则代表一个Python对象。接下来的参数都是你想要通

过PyArg_ParseTuple()函数解析并保存的元素。这样参数的数量和模块中函数期待得到的参数数量就可以保持一致,并保证了位置的完整性。例如,我们想传入一个字符串,一个整数和一个Python列表,可以这样去写

int n;
char *s;
PyObject* list;
PyArg_ParseTuple(args, "siO", &n, &s, &list);

在这种情况下,我们只需要提取一个列表对象,并将它存储在listObj变量中。然后用列表对象中的PyList_Size()函数来获取它的长度。就像Python中调用len(list)。

现在我们通过循环列表,使用PyList_GetItem(list, index)函数来获取每个元素。

这将返回一个PyObject*对象。既然Python对象也能表示PyIntType,我们只要使用PyInt_AsLong(PyObj *)函数便可获得我们所需要的值。我们对每个元素都这样处理,最后再得到它们的总和。

总和将被转化为一个Python对象并通过Py_BuildValue()返回给Python代码,这里的i表示我们要返回一个Python整形对象。

现在我们已经编写完C模块了。将下列代码保存为setup.py

#build the modules
from distutils.core import setup, Extension
setup(name='addList', version='1.0', \
ext_modules=[Extension('addList', ['adder.c'])])
复制代码

并且运行

python setup.py install

现在应该已经将我们的C文件编译安装到我们的Python模块中了。

在一番辛苦后,让我们来验证下我们的模块是否有效

#module that talks to the C code
import addList
l = [1,2,3,4,5]
print "Sum of List - " + str(l) + " = " + str(addList.add(l))
复制代码

输出结果如下

Sum of List - [1, 2, 3, 4, 5] =15

如你所见,我们已经使用Python.h API成功开发出了我们第一个Python C扩展。这种方法看似复杂,但你一旦习惯,它将变的非常有效。

Python调用C代码的另一种方式便是使用Cython让Python编译的更快。但是Cython和传统的Python比起来可以将它理解为另一种语言,所以我们就不在这里过多描述了。


作者:zhulin1028

著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

相关文章
|
6月前
|
数据采集 网络协议 数据挖掘
网络爬虫进阶之路:深入理解HTTP协议,用Python urllib解锁新技能
【7月更文挑战第30天】网络爬虫是数据分析和信息聚合的关键工具。深入理解HTTP协议及掌握Python的urllib库对于高效爬虫开发至关重要。HTTP协议采用请求/响应模型,具有无状态性、支持多种请求方法和内容协商等特点。
60 3
|
6月前
|
网络协议 开发者 Python
网络编程小白秒变大咖!Python Socket基础与进阶教程,轻松上手无压力!
【7月更文挑战第25天】在网络技术快速发展的背景下, Python因其简洁的语法和强大的库支持成为学习网络编程的理想选择。
79 5
|
6月前
|
机器学习/深度学习 数据采集 算法
Python编程语言进阶学习:深入探索与高级应用
【7月更文挑战第23天】Python的进阶学习是一个不断探索和实践的过程。通过深入学习高级数据结构、面向对象编程、并发编程、性能优化以及在实际项目中的应用,你将能够更加熟练地运用Python解决复杂问题,并在编程道路上走得更远。记住,理论知识只是基础,真正的成长来自于不断的实践和反思。
|
6月前
|
开发者 Python
Python Socket编程:不只是基础,更有进阶秘籍,让你的网络应用飞起来!
【7月更文挑战第25天】在网络应用蓬勃发展的数字时代,Python凭借其简洁的语法和强大的库支持成为开发高效应用的首选。本文通过实时聊天室案例,介绍了Python Socket编程的基础与进阶技巧,包括服务器与客户端的建立、数据交换等基础篇内容,以及使用多线程和异步IO提升性能的进阶篇。基础示例展示了服务器端监听连接请求、接收转发消息,客户端连接服务器并收发消息的过程。进阶部分讨论了如何利用Python的`threading`模块和`asyncio`库来处理多客户端连接,提高应用的并发处理能力和响应速度。掌握这些技能,能使开发者在网络编程领域更加游刃有余,构建出高性能的应用程序。
40 3
|
6月前
|
网络协议 Python
网络世界的建筑师:Python Socket编程基础与进阶,构建你的网络帝国!
【7月更文挑战第26天】在网络的数字宇宙中,Python Socket编程是开启网络世界大门的钥匙。本指南将引领你从基础到实战,成为网络世界的建筑师。
70 2
|
6月前
|
SQL 安全 Go
SQL注入不可怕,XSS也不难防!Python Web安全进阶教程,让你安心做开发!
【7月更文挑战第26天】在 Web 开发中, SQL 注入与 XSS 攻击常令人担忧, 但掌握正确防御策略可化解风险. 对抗 SQL 注入的核心是避免直接拼接用户输入至 SQL 语句. 使用 Python 的参数化查询 (如 sqlite3 库) 和 ORM 框架 (如 Django, SQLAlchemy) 可有效防范. 防范 XSS 攻击需严格过滤及转义用户输入. 利用 Django 模板引擎自动转义功能, 或手动转义及设置内容安全策略 (CSP) 来增强防护. 掌握这些技巧, 让你在 Python Web 开发中更加安心. 安全是个持续学习的过程, 不断提升才能有效保护应用.
62 1
|
6月前
|
存储 算法 搜索推荐
算法进阶之路:Python 归并排序深度剖析,让数据排序变得艺术起来!
【7月更文挑战第12天】归并排序是高效稳定的排序算法,采用分治策略。Python 实现包括递归地分割数组及合并已排序部分。示例代码展示了如何将 `[12, 11, 13, 5, 6]` 分割并归并成有序数组 `[5, 6, 11, 12, 13]`。虽然 $O(n log n)$ 时间复杂度优秀,但需额外空间,适合大规模数据排序。对于小规模数据,可考虑其他算法。**
81 4
|
6月前
|
算法 Python
Python算法高手进阶指南:分治法、贪心算法、动态规划,掌握它们,算法难题迎刃而解!
【7月更文挑战第10天】探索Python算法的精华:分治法(如归并排序)、贪心策略(如找零钱问题)和动态规划(解复杂问题)。通过示例代码揭示它们如何优化问题解决,提升编程技能。掌握这些策略,攀登技术巅峰。
152 2
|
7月前
|
开发者 Python
Python进阶:深入剖析闭包与装饰器的应用与技巧
Python进阶:深入剖析闭包与装饰器的应用与技巧
|
7月前
|
分布式计算 算法 Python
Python函数进阶:四大高阶函数、匿名函数、枚举、拉链与递归详解
Python函数进阶:四大高阶函数、匿名函数、枚举、拉链与递归详解