简介
前缀树又称单词查找树,Trie树,是一种树形结构,是一种哈希树的变种。典型应用是用于统计,排序和保存大量的字符串(但不仅限于字符串),所以经常被搜索引擎系统用于文本词频统计。它的优点是:利用字符串的公共前缀来减少查询时间,最大限度地减少无谓的字符串比较,查询效率比哈希树高。
它有3个基本性质:根节点不包含字符,除根节点外每一个节点都只包含一个字符; 从根节点到某一节点,路径上经过的字符连接起来,为该节点对应的字符串; 每个节点的所有子节点包含的字符都不相同。
例子
题目
Trie(发音类似 "try")或者说 前缀树 是一种树形数据结构,用于高效地存储和检索字符串数据集中的键。这一数据结构有相当多的应用情景,例如自动补完和拼写检查。
请你实现 Trie 类:
Trie() 初始化前缀树对象。
void insert(String word) 向前缀树中插入字符串 word 。
boolean search(String word) 如果字符串 word 在前缀树中,返回 true(即,在检索之前已经插入);否则,返回 false 。
boolean startsWith(String prefix) 如果之前已经插入的字符串 word 的前缀之一为 prefix ,返回 true ;否则,返回 false 。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/implement-trie-prefix-tree
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
示例
输入
["Trie", "insert", "search", "search", "startsWith", "insert", "search"]
[[], ["apple"], ["apple"], ["app"], ["app"], ["app"], ["app"]]
输出
[null, null, true, false, true, null, true]
解释
Trie trie = new Trie();
trie.insert("apple");
trie.search("apple"); // 返回 True
trie.search("app"); // 返回 False
trie.startsWith("app"); // 返回 True
trie.insert("app");
trie.search("app"); // 返回 True
代码实现
思路
前缀树本质就是一种树结构,每一个节点存放一个字母,并连接下一个字母,这样多个字母连接起来就是一个完整的单词了,如下图所示:
上图可以表示两个单词:APP和APPLE,查找单词的时候我们应该冲根节点出发,直到匹配到isEnd标记的时候则代表根节点到该节点的所有字母可以组成一个完整的单词。具体实现代码如下:
代码
/**
* Initialize your data structure here.
*/
var Trie = function() {
this.tree = {};
};
/**
* Inserts a word into the trie.
* @param {string} word
* @return {void}
*/
Trie.prototype.insert = function(word) {
let tree = this.tree;
for(const w of word){
if(tree[w] == undefined){
tree[w] = {};
}
tree = tree[w];
}
tree.isEnd = true;
};
/**
* Returns if the word is in the trie.
* @param {string} word
* @return {boolean}
*/
Trie.prototype.search = function(word) {
let tree = this.tree;
for(const w of word){
if(tree[w] == undefined){
return false;
}
tree = tree[w];
}
return tree.isEnd == true;
};
/**
* Returns if there is any word in the trie that starts with the given prefix.
* @param {string} prefix
* @return {boolean}
*/
Trie.prototype.startsWith = function(prefix) {
let tree = this.tree;
for(const w of prefix){
if(tree[w] == undefined){
return false;
}
tree = tree[w];
}
return true;
};
/**
* Your Trie object will be instantiated and called as such:
* var obj = new Trie()
* obj.insert(word)
* var param_2 = obj.search(word)
* var param_3 = obj.startsWith(prefix)
*/
应用
前缀树在很多地方都可以使用到,如:
串的快速检索
给出N个单词组成的熟词表,以及一篇全用小写英文书写的文章,请你按最早出现的顺序写出所有不在熟词表中的生词。
在这道题中,我们可以用数组枚举,用哈希,用字典树,先把熟词建一棵树,然后读入文章进行比较,这种方法效率是比较高的。
“串”排序
给定N个互不相同的仅由一个单词构成的英文名,让你将他们按字典序从小到大输出用字典树进行排序,采用数组的方式创建字典树,这棵树的每个结点的所有儿子很显然地按照其字母大小排序。对这棵树进行先序遍历即可。
最长公共前缀
对所有串建立字典树,对于两个串的最长公共前缀的长度即他们所在的结点的公共祖先个数,于是,问题就转化为当时公共祖先问题。