Java数据结构与算法——哈希表

简介: Java数据结构与算法——哈希表

1.关于哈希


散列表(Hash table,也叫哈希表),是根据关键码值(Key value)而直接进行访问的数据结构。也就是说,它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度。这个映射函数叫做散列函数,存放记录的数组叫做散列表。




2.代码案例


有一个公司,当有新的员工来报道时,要求将该员工的信息加入 (id,性别,年龄,名字,住址..),当输入该员工的id时,要求查找到该员工的 所有信息。




package com.szh.hashtab;
import java.util.Objects;
import java.util.Scanner;
/**
 * 哈希表
 */
//雇员类
class Employee {
    public int id;
    public String name;
    public Employee next;
    public Employee(int id, String name) {
        this.id = id;
        this.name = name;
    }
}
//创建EmpLinkedList, 表示链表
class EmployeeLinkedList {
    //头指针,指向第一个Emp。因此我们这个链表的head 是直接指向第一个Emp
    private Employee head; //默认为null
    //添加雇员到链表
    //假定,当添加雇员时,id 是自增长,即id的分配总是从小到大,因此我们将该雇员直接加入到本链表的最后即可
    public void add(Employee employee) {
        //如果添加的是第一个雇员
        if (head == null) {
            head = employee;
            return;
        }
        //如果不是第一个雇员,则使用一个辅助的指针,帮助定位到最后
        Employee curEmp = head;
        while (true) {
            if (curEmp.next == null) { //此时说明已经到了链表的最后
                break;
            }
            curEmp = curEmp.next;
        }
        //最后将要添加的雇员放在链表的最后
        curEmp.next = employee;
    }
    //根据传入的no,确定要遍历哪条链表的雇员信息
    public void list(int no) {
        if (head == null) { //说明链表为空
            System.out.println("第 " + (no + 1) + " 链表为空....");
            return;
        }
        System.out.print("第 " + (no + 1) + " 链表的信息为: ");
        Employee curEmp = head; //辅助指针
        while (true) {
            System.out.printf(" => id = %d, name = %s\t", curEmp.id, curEmp.name);
            if (curEmp.next == null) { //说明curEmp已经是最后节点
                break;
            }
            curEmp = curEmp.next; //后移,遍历
        }
        System.out.println();
    }
    //根据id查找雇员
    //如果查找到,就返回Emp, 如果没有找到,就返回null
    public Employee findEmployeeById(int id) {
        //判断链表是否为空
        if (head == null) {
            System.out.println("链表为空....");
            return null;
        }
        //辅助指针
        Employee curEmp = head;
        while (true) {
            if (curEmp.id == id) { //找到了,此时curEmp就是要查找的雇员信息
                break;
            }
            if (curEmp.next == null) { //说明遍历当前链表没有找到该雇员
                curEmp = null; //没找到则将curEmp置为null
                break;
            }
            curEmp = curEmp.next; //向后移动
        }
        return curEmp;
    }
}
//创建HashTab,使用哈希表来管理多条链表
class HashTab {
    private EmployeeLinkedList[] employeeLinkedLists;
    private int size; //表示共有多少条链表
    public HashTab(int size) {
        this.size = size;
        employeeLinkedLists = new EmployeeLinkedList[size];
        //这里需要分别初始化每条链表
        for (int i = 0; i < size; i++) {
            employeeLinkedLists[i] = new EmployeeLinkedList();
        }
    }
    //添加雇员
    public void add(Employee employee) {
        //根据员工的id,得到该员工应当添加到哪条链表
        int empLinkedListNo = hashFun(employee.id);
        //将emp添加到对应的链表中
        employeeLinkedLists[empLinkedListNo].add(employee);
    }
    //遍历所有的链表,即遍历哈希表
    public void list() {
        for (int i = 0; i < size; i++) {
            employeeLinkedLists[i].list(i);
        }
    }
    //根据输入的id,查找雇员
    public void findEmployeeById(int id) {
        //使用散列函数确定到哪条链表查找
        int empLinkedListNo = hashFun(id);
        Employee employee = employeeLinkedLists[empLinkedListNo].findEmployeeById(id);
        if (Objects.nonNull(employee)) { //找到
            System.out.printf("在第 %d 条链表中找到 雇员 id = %d\n", (empLinkedListNo + 1), id);
        } else { //未找到
            System.out.println("在哈希表中,没有找到该雇员~");
        }
    }
    //编写散列函数, 使用一个简单取模法
    public int hashFun(int id) {
        return id % size;
    }
}
public class HashTabDemo {
    public static void main(String[] args) {
        //创建哈希表
        HashTab hashTab = new HashTab(7);
        String key = "";
        Scanner scanner = new Scanner(System.in);
        while (true) {
            System.out.println("add:  添加雇员");
            System.out.println("list: 显示雇员");
            System.out.println("find: 查找雇员");
            System.out.println("exit: 退出系统");
            key = scanner.next();
            switch (key) {
                case "add":
                    System.out.println("输入id: ");
                    int id = scanner.nextInt();
                    System.out.println("输入名字: ");
                    String name = scanner.next();
                    Employee employee = new Employee(id, name);
                    hashTab.add(employee);
                    break;
                case "list":
                    hashTab.list();
                    break;
                case "find":
                    System.out.println("请输入要查找的id: ");
                    id = scanner.nextInt();
                    hashTab.findEmployeeById(id);
                    break;
                case "exit":
                    scanner.close();
                    System.exit(0);
                default:
                    break;
            }
        }
    }
}


代码中的注释已经写的很清楚了,我就不再多说了,下面是测试相关截图。

相关文章
|
20天前
|
存储 算法 安全
探究‘公司禁用 U 盘’背后的哈希表算法与 Java 实现
在数字化办公时代,信息安全至关重要。许多公司采取“禁用U盘”策略,利用哈希表算法高效管理外接设备的接入权限。哈希表通过哈希函数将设备标识映射到数组索引,快速判断U盘是否授权。例如,公司预先将允许的U盘标识存入哈希表,新设备接入时迅速验证,未授权则禁止传输并报警。这有效防止恶意软件和数据泄露,保障企业信息安全。 代码示例展示了如何用Java实现简单的哈希表,模拟公司U盘管控场景。哈希表不仅用于设备管理,还在文件索引、用户权限等多方面助力信息安全防线的构建,为企业数字化进程保驾护航。
|
29天前
|
监控 算法 网络协议
Java 实现局域网电脑屏幕监控算法揭秘
在数字化办公环境中,局域网电脑屏幕监控至关重要。本文介绍用Java实现这一功能的算法,涵盖图像采集、数据传输和监控端显示三个关键环节。通过Java的AWT/Swing库和Robot类抓取屏幕图像,使用Socket进行TCP/IP通信传输图像数据,并利用ImageIO类在监控端展示图像。整个过程确保高效、实时和准确,为提升数字化管理提供了技术基础。
66 15
|
3月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
115 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
4天前
|
存储 人工智能 算法
解锁分布式文件分享的 Java 一致性哈希算法密码
在数字化时代,文件分享成为信息传播与协同办公的关键环节。本文深入探讨基于Java的一致性哈希算法,该算法通过引入虚拟节点和环形哈希空间,解决了传统哈希算法在分布式存储中的“哈希雪崩”问题,确保文件分配稳定高效。文章还展示了Java实现代码,并展望了其在未来文件分享技术中的应用前景,如结合AI优化节点布局和区块链增强数据安全。
|
6天前
|
算法 安全 Java
Java线程调度揭秘:从算法到策略,让你面试稳赢!
在社招面试中,关于线程调度和同步的相关问题常常让人感到棘手。今天,我们将深入解析Java中的线程调度算法、调度策略,探讨线程调度器、时间分片的工作原理,并带你了解常见的线程同步方法。让我们一起破解这些面试难题,提升你的Java并发编程技能!
45 16
|
21天前
|
运维 监控 算法
企业局域网监控软件中 Java 优先队列算法的核心优势
企业局域网监控软件是数字化时代企业网络安全与高效运营的基石,犹如一位洞察秋毫的卫士。通过Java实现的优先队列算法,它能依据事件优先级排序,确保关键网络事件如异常流量、数据泄露等被优先处理,保障系统稳定与安全。代码示例展示了如何定义网络事件类并使用PriorityQueue处理高优先级事件,尤其在面对疑似风险时迅速启动应急措施。这一核心技术助力企业在复杂网络环境中稳健前行,护航业务腾飞。
59 32
|
13天前
|
存储 监控 算法
员工电脑监控屏幕场景下 Python 哈希表算法的探索
在数字化办公时代,员工电脑监控屏幕是保障信息安全和提升效率的重要手段。本文探讨哈希表算法在该场景中的应用,通过Python代码例程展示如何使用哈希表存储和查询员工操作记录,并结合数据库实现数据持久化,助力企业打造高效、安全的办公环境。哈希表在快速检索员工信息、优化系统性能方面发挥关键作用,为企业管理提供有力支持。
38 20
|
11天前
|
存储 监控 算法
剖析基于Java算法驱动的智能局域网管控之道
本文探讨了基于Java语言的局域网控制方案,结合链表数据结构与令牌桶算法,解决设备管理和流量调度难题。通过链表灵活存储网络设备信息,实现高效设备管理;令牌桶算法则精准控制流量,确保网络平稳运行。二者相辅相成,为校园、企业等局域网提供稳固高效的控制体系,保障业务连续性和数据安全。
|
9天前
|
算法 搜索推荐 Java
【潜意识Java】深度解析黑马项目《苍穹外卖》与蓝桥杯算法的结合问题
本文探讨了如何将算法学习与实际项目相结合,以提升编程竞赛中的解题能力。通过《苍穹外卖》项目,介绍了订单配送路径规划(基于动态规划解决旅行商问题)和商品推荐系统(基于贪心算法)。这些实例不仅展示了算法在实际业务中的应用,还帮助读者更好地准备蓝桥杯等编程竞赛。结合具体代码实现和解析,文章详细说明了如何运用算法优化项目功能,提高解决问题的能力。
44 6
|
9天前
|
算法 Java C++
【潜意识Java】蓝桥杯算法有关的动态规划求解背包问题
本文介绍了经典的0/1背包问题及其动态规划解法。
34 5

热门文章

最新文章