Java集合源码剖析——基于JDK1.8中HashMap的实现原理(上)

简介: Java集合源码剖析——基于JDK1.8中HashMap的实现原理(上)

文章目录:


1.HashMap源码注释翻译

2.HashMap中的属性

3.HashMap中的方法

3.1 构造方法

3.2 get方法

3.3 put方法

3.4 remove方法



1.HashMap源码注释翻译


* Hash table based implementation of the <tt>Map</tt> interface.  This

* implementation provides all of the optional map operations, and permits

* <tt>null</tt> values and the <tt>null</tt> key.  (The <tt>HashMap</tt>

* class is roughly equivalent to <tt>Hashtable</tt>, except that it is

* unsynchronized and permits nulls.)  This class makes no guarantees as to

* the order of the map; in particular, it does not guarantee that the order

* will remain constant over time.


翻译一下大概就是在说,这个哈希表是基于 Map 接口的实现的,它允许 null 值和null 键,它不是线程同步的,同时也不保证有序。


* <p>This implementation provides constant-time performance for the basic

* operations (<tt>get</tt> and <tt>put</tt>), assuming the hash function

* disperses the elements properly among the buckets.  Iteration over

* collection views requires time proportional to the "capacity" of the

* <tt>HashMap</tt> instance (the number of buckets) plus its size (the number

* of key-value mappings). Thus, it's very important not to set the initial

* capacity too high (or the load factor too low) if iteration performance is

* important.


再来看看这一段,讲的是Map 的这种实现方式为 get(取)和 put(存)带来了比较好的性能。但是如果涉及到大量的遍历操作的话,就尽量不要把 capacity 设置得太高(或 load factor 设置得太低),否则会严重降低遍历的效率。

影响 HashMap 性能的两个重要参数:“initial capacity”(初始化容量)和”loadfactor“(负载因子)。简单来说,容量就是哈希表桶的个数,负载因子就是键值对个数与哈希表长度的一个比值,当比值超过负载因子之后,HashMap 就会进行 rehash操作来进行扩容。


·       HashMap集合底层结构是数组 + 单向链表 + 红黑树。

·       HashMap集合中的keyvalue均可为 null,其中key是无序不可重复的。

·       HashMap集合的默认初始化容量是16,默认加载因子是 0.75,扩容之后是原容量的2倍。

·       如果HashMap集合中某个桶中的结点数超过了8,则单向链表结点会被替换成红黑树结点;当桶中的结点数小于6时,会将树形结点转回单向链表结点。只有当哈希表中的元素数量超过64时,才会进行树形化(即转换成红黑树这种结构)。否则只是进行扩容。


HashMap 的大致结构如下图所示,其中哈希表是一个数组,我们经常把数组中的每一个节点称为一个桶,哈希表中的每个节点都用来存储一个键值对。在插入元素时,如果发生冲突(即多个键值对映射到同一个桶上)的话,就会通过链表的形式来解决冲突。因为一个桶上可能存在多个键值对,所以在查找的时候,会先通过 key 的哈希值先定位到桶,再遍历桶上的所有键值对,找出 key 相等的键值对,从而来获取 value

image.png

2.HashMap中的属性


//默认的初始容量为 2^4=16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
//最大的容量上限为 2^30
static final int MAXIMUM_CAPACITY = 1 << 30;
//默认的加载因子为 0.75
static final float DEFAULT_LOAD_FACTOR = 0.75f;
//变成树型结构的临界值为 8
static final int TREEIFY_THRESHOLD = 8;
//恢复链式结构的临界值为 6
static final int UNTREEIFY_THRESHOLD = 6;
//当哈希表的大小超过这个阈值,才会把链式结构转化成树型结构,否则仅采取扩容来尝试减少冲突
static final int MIN_TREEIFY_CAPACITY = 64;
//哈希表
transient Node<K,V>[] table;
//哈希表中键值对的个数
transient int size;
//哈希表被修改的次数
transient int modCount;
//它是通过 capacity*load factor 计算出来的,当 size 到达这个值时,就会进行扩容操作
int threshold;
//负载因子,决定了HashMap集合的数据密度
//负载因子过大,发生碰撞的几率会越高
//负载因子过小,就越容易触发扩容,扩容自然也会影响性能
//按照其他语言的参考及研究经验,会考虑将负载因子设置为0.75,此时平均检索长度接近于常数
final float loadFactor;

下面是 Node 类的定义,它是 HashMap 中的一个静态内部类,哈希表中的每一个节点都是 Node 类型。我们可以看到 Node 类中有4 个属性,其中除了 key
value
之外,还有hashnext 两个属性。hash 是用来存储 key 的哈希值的,next是在构建链表时用来指向后继节点的。

static class Node<K,V> implements Map.Entry<K,V> {
    final int hash;
    final K key;
    V value;
    Node<K,V> next;
    Node(int hash, K key, V value, Node<K,V> next) {
        this.hash = hash;
        this.key = key;
        this.value = value;
        this.next = next;
    }
    public final K getKey()        { return key; }
    public final V getValue()      { return value; }
    public final String toString() { return key + "=" + value; }
    public final int hashCode() {
        return Objects.hashCode(key) ^ Objects.hashCode(value);
    }
    public final V setValue(V newValue) {
        V oldValue = value;
        value = newValue;
        return oldValue;
    }
    public final boolean equals(Object o) {
        if (o == this)
            return true;
        if (o instanceof Map.Entry) {
            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
            if (Objects.equals(key, e.getKey()) &&
                Objects.equals(value, e.getValue()))
                return true;
        }
        return false;
    }
}


3.HashMap中的方法


3.1 构造方法

关于HashMap源码中的构造方法,无非是在更改初始化容量、加载因子这些参数。这里就不再多说了。(主要是后面的getput方法)

public HashMap(int initialCapacity, float loadFactor) {
    if (initialCapacity < 0)
        throw new IllegalArgumentException("Illegal initial capacity: " +
                                           initialCapacity);
    if (initialCapacity > MAXIMUM_CAPACITY)
        initialCapacity = MAXIMUM_CAPACITY;
    if (loadFactor <= 0 || Float.isNaN(loadFactor))
        throw new IllegalArgumentException("Illegal load factor: " +
                                           loadFactor);
    this.loadFactor = loadFactor;
    this.threshold = tableSizeFor(initialCapacity);
}
public HashMap(int initialCapacity) {
    this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
public HashMap() {
    this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
public HashMap(Map<? extends K, ? extends V> m) {
    this.loadFactor = DEFAULT_LOAD_FACTOR;
    putMapEntries(m, false);
}

3.2 get方法


get方法首先是创建了一个 Node 结点对象,然后其中调用了 getNode 方法,所以我们着重来看一下这个 getNode 方法。

这个 getNode() 方法首先:如果哈希表不为空 && key 对应的桶上不为空,然后根据哈希表元素个数与哈希值求模(使用的公式是 (n - 1) &hash )得到 key 所在的桶的头结点,如果头结点恰好命中(是我们要get的那个key),则直接返回。如果头结点没有命中,则继续向后续结点进行判断,如果头节点恰好是红黑树节点TreeNode,就调用红黑树节点的 getTreeNode() 方法,否则就执行 do-while 遍历链表节点。

public V get(Object key) {
    Node<K,V> e;
    return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node<K,V> getNode(int hash, Object key) {
    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
    //如果哈希表不为空 && key 对应的桶上不为空
    if ((tab = table) != null && (n = tab.length) > 0 &&
        //根据哈希表元素个数与哈希值求模( 使用的公式是 (n - 1) &hash )得到 key 所在的桶的头结点
        (first = tab[(n - 1) & hash]) != null) {
        //是否直接命中
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))
            return first;
        //判断是否还有后续结点
        if ((e = first.next) != null) {
            if (first instanceof TreeNode)
                return ((TreeNode<K,V>)first).getTreeNode(hash, key);
            do {
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}

get方法实现原理叙述:假如我们调用原型是map.get("a"),首先会调用 a hash() 方法得到 a 所对应的哈希值,然后通过哈希算法 tab[(n-1) & hash] 转换成桶下标(数组下标),通过这个桶下标快速定位到当前桶结点上,如果比对成功(hashCodeequals都返回true),则返回这个桶结点,如果当前桶结点上什么都没有则返回null。如果当前桶结点没有直接命中,它下面还挂载了其他结点,则继续判断后续结点,为红黑树结构则转为红黑树的get方法获取结点;如果不是则为普通单向链表结构,此时拿着a 和单向链表上的每一个结点进行 equals 方法比对(因为hashCode只有比对成功才会到当前桶结点下继续比对),有一个equals返回 true 则比对成功,返回对应的结点,比对不成功最终返回 null


3.3 put方法

put 方法的具体实现是在 putVal 方法中,所以我们重点看下面的 putVal 方法。


第一个if判断,我们一看就知道:做的是哈希表是否为空的判断,如果为空,调用 resize 方法,这个方法作用就是新创建一个哈希表。


第二个if判断:如果要插入的键值对的key对应的哈希值与当前桶结点的哈希值比对为null(不冲突),则直接为这个key创建一个新结点newNode()插入就行了。


下面走到else:与第二个if相反,走到else则说明,要插入的键值对与当前桶结点发生冲突了。if是说如果桶上结点的key与我们要插入的key重复,直接确定插入的位置就是该结点(e = p)。else if是指采用红黑树方法则调用红黑树对应的方法进行插入。else表示不是红黑树,那只能是传统的单向链表结构,只有桶上结点在上面的if中比对不成功,才会走到这个else,它执行的就是将要插入的key与当前桶下挂载的结点一一进行比对,如果比对到链表末尾还没找到重复的key,则newNode创建新结点将要插入的key添加到链表末尾。如果链表长度超过临界值,则转为红黑树。else的最后如果找到了重复的key,就break跳出。


else下面的if:就是说明此时已经找到了(我们要插入的key与桶中某个结点的key相等),那么就将要插入key对应的value值覆盖掉原先的旧值,同时返回覆盖掉的那个旧值。

最后的if则是进行是否扩容的判断。

public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
               boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    //如果哈希表为空,则先创建一个哈希表
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    //如果当前桶没有碰撞冲突,则直接把键值对插入,完事
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);
    else {
        Node<K,V> e; K k;
        //如果桶上节点的 key 与当前 key 重复,那你就是我要找的节点了
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;
        //如果是采用红黑树的方式处理冲突,则通过红黑树的 putTreeVal 方法去插入这个键值对
        else if (p instanceof TreeNode)
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        //否则就是传统的单向链表结构
        else {
            for (int binCount = 0; ; ++binCount) {
                //到了链尾还没找到重复的 key,则说明 HashMap 没有包含该键
                if ((e = p.next) == null) {
                    //创建一个新节点插入到尾部
                    p.next = newNode(hash, key, value, null);
                    //如果链的长度大于 TREEIFY_THRESHOLD 这个临界值,则把链变为红黑树
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash);
                    break;
                }
                //找到了重复的 key
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                p = e;
            }
        }
        //这里表示在上面的操作中找到了重复的键,所以这里把该键的值替换为新值
        if (e != null) { // existing mapping for key
            V oldValue = e.value;
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
    }
    ++modCount;
    //判断是否需要进行扩容
    if (++size > threshold)
        resize();
    afterNodeInsertion(evict);
    return null;
}


put方法实现原理叙述:如果哈希表为null,则创建哈希表;通过计算哈希值确定要映射到哪个桶,如果要插入的key与当前桶没有冲突,则直接插入;如果要插入的key与当前桶上结点冲突,则处理碰撞冲突(如果是红黑树则采用红黑树方法进行插入;否则就是单向链表,对当前桶上结点一一遍历,如果最终都不冲突,则将该key插入到链表末尾;如果链表长度达到临界值,则转为红黑树);如果桶中存在重复的键,则将该键的旧值替换为要插入的新值。最终判断size是否大于阈值,大于则执行扩容操作。


3.4 remove方法

remove 方法的具体实现在 removeNode 方法中,所以我们重点看下面的 removeNode 方法。

public V remove(Object key) {
    Node<K,V> e;
    return (e = removeNode(hash(key), key, null, false, true)) == null ?
        null : e.value;
}
final Node<K,V> removeNode(int hash, Object key, Object value,
                           boolean matchValue, boolean movable) {
    Node<K,V>[] tab; Node<K,V> p; int n, index;
    //如果当前 key 映射到的桶不为空
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (p = tab[index = (n - 1) & hash]) != null) {
        Node<K,V> node = null, e; K k; V v;
        //如果桶上的节点就是要找的 key,则直接命中
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            node = p;
        //查找当前桶下挂载的其他结点
        else if ((e = p.next) != null) {
            //如果是以红黑树处理冲突,则构建一个树节点
            if (p instanceof TreeNode)
                node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
            //如果是以链式的方式处理冲突,则通过遍历链表来寻找节点
            else {
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key ||
                         (key != null && key.equals(k)))) {
                        node = e;
                        break;
                    }
                    p = e;
                } while ((e = e.next) != null);
            }
        }
        //比对找到的 key 的 value 跟要删除的是否匹配
        if (node != null && (!matchValue || (v = node.value) == value ||
                             (value != null && value.equals(v)))) {
            //通过调用红黑树的方法来删除节点
            if (node instanceof TreeNode)
                ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
            //使用链表的操作来删除桶上节点
            else if (node == p)
                tab[index] = node.next;
            else
                p.next = node.next;
            ++modCount;
            --size;
            afterNodeRemoval(node);
            return node;
        }
    }
    return null;
}
相关文章
|
3天前
|
存储 安全 Java
Java 集合框架中的老炮与新秀:HashTable 和 HashMap 谁更胜一筹?
嗨,大家好,我是技术伙伴小米。今天通过讲故事的方式,详细介绍 Java 中 HashMap 和 HashTable 的区别。从版本、线程安全、null 值支持、性能及迭代器行为等方面对比,帮助你轻松应对面试中的经典问题。HashMap 更高效灵活,适合单线程或需手动处理线程安全的场景;HashTable 较古老,线程安全但性能不佳。现代项目推荐使用 ConcurrentHashMap。关注我的公众号“软件求生”,获取更多技术干货!
23 3
|
27天前
|
XML Java 编译器
Java注解的底层源码剖析与技术认识
Java注解(Annotation)是Java 5引入的一种新特性,它提供了一种在代码中添加元数据(Metadata)的方式。注解本身并不是代码的一部分,它们不会直接影响代码的执行,但可以在编译、类加载和运行时被读取和处理。注解为开发者提供了一种以非侵入性的方式为代码提供额外信息的手段,这些信息可以用于生成文档、编译时检查、运行时处理等。
62 7
|
19天前
|
存储 JavaScript 前端开发
基于 SpringBoot 和 Vue 开发校园点餐订餐外卖跑腿Java源码
一个非常实用的校园外卖系统,基于 SpringBoot 和 Vue 的开发。这一系统源于黑马的外卖案例项目 经过站长的进一步改进和优化,提供了更丰富的功能和更高的可用性。 这个项目的架构设计非常有趣。虽然它采用了SpringBoot和Vue的组合,但并不是一个完全分离的项目。 前端视图通过JS的方式引入了Vue和Element UI,既能利用Vue的快速开发优势,
101 13
|
2月前
|
缓存 监控 Java
Java线程池提交任务流程底层源码与源码解析
【11月更文挑战第30天】嘿,各位技术爱好者们,今天咱们来聊聊Java线程池提交任务的底层源码与源码解析。作为一个资深的Java开发者,我相信你一定对线程池并不陌生。线程池作为并发编程中的一大利器,其重要性不言而喻。今天,我将以对话的方式,带你一步步深入线程池的奥秘,从概述到功能点,再到背景和业务点,最后到底层原理和示例,让你对线程池有一个全新的认识。
57 12
|
27天前
|
JavaScript 安全 Java
java版药品不良反应智能监测系统源码,采用SpringBoot、Vue、MySQL技术开发
基于B/S架构,采用Java、SpringBoot、Vue、MySQL等技术自主研发的ADR智能监测系统,适用于三甲医院,支持二次开发。该系统能自动监测全院患者药物不良反应,通过移动端和PC端实时反馈,提升用药安全。系统涵盖规则管理、监测报告、系统管理三大模块,确保精准、高效地处理ADR事件。
|
29天前
|
人工智能 移动开发 安全
家政上门系统用户端、阿姨端源码,java家政管理平台源码
家政上门系统基于互联网技术,整合大数据分析、AI算法和现代通信技术,提供便捷高效的家政服务。涵盖保洁、月嫂、烹饪等多元化服务,支持多终端访问,具备智能匹配、在线支付、订单管理等功能,确保服务透明、安全,适用于家庭生活的各种需求场景,推动家政市场规范化发展。
|
8月前
|
存储 安全 Java
java集合框架及其特点(List、Set、Queue、Map)
java集合框架及其特点(List、Set、Queue、Map)
|
5月前
|
存储 安全 Java
【Java集合类面试二十五】、有哪些线程安全的List?
线程安全的List包括Vector、Collections.SynchronizedList和CopyOnWriteArrayList,其中CopyOnWriteArrayList通过复制底层数组实现写操作,提供了最优的线程安全性能。
|
5月前
|
Java
【Java集合类面试二十三】、List和Set有什么区别?
List和Set的主要区别在于List是一个有序且允许元素重复的集合,而Set是一个无序且元素不重复的集合。
|
3月前
|
安全 Java 程序员
深入Java集合框架:解密List的Fail-Fast与Fail-Safe机制
本文介绍了 Java 中 List 的遍历和删除操作,重点讨论了快速失败(fail-fast)和安全失败(fail-safe)机制。通过普通 for 循环、迭代器和 foreach 循环的对比,详细解释了各种方法的优缺点及适用场景,特别是在多线程环境下的表现。最后推荐了适合高并发场景的 fail-safe 容器,如 CopyOnWriteArrayList 和 ConcurrentHashMap。
69 5