雪花算法代码 - 学习参考

简介: 雪花算法代码 - 学习参考

前言



从github上面摘录的一个雪花算法的实现,可以作为学习参考


具体代码



package com.myapp.cunpleuserapp.util;
/**
 * Twitter_Snowflake<br>
 * SnowFlake的结构如下(每部分用-分开):<br>
 * 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000 <br>
 * 1位标识,由于long基本类型在Java中是带符号的,最高位是符号位,正数是0,负数是1,所以id一般是正数,最高位是0<br>
 * 41位时间截(毫秒级),注意,41位时间截不是存储当前时间的时间截,而是存储时间截的差值(当前时间截 - 开始时间截)
 * 得到的值),这里的的开始时间截,一般是我们的id生成器开始使用的时间,由我们程序来指定的(如下下面程序IdWorker类的startTime属性)。41位的时间截,可以使用69年,年T = (1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69<br>
 * 10位的数据机器位,可以部署在1024个节点,包括5位datacenterId和5位workerId<br>
 * 12位序列,毫秒内的计数,12位的计数顺序号支持每个节点每毫秒(同一机器,同一时间截)产生4096个ID序号<br>
 * 加起来刚好64位,为一个Long型。<br>
 * SnowFlake的优点是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作区分),并且效率较高,经测试,SnowFlake每秒能够产生26万ID左右。
 */
public class SnowflakeIdWorker {
    // ==============================Fields===========================================
    /** 开始时间截 (2015-01-01) */
    private final long twepoch = 1420041600000L;
    /** 机器id所占的位数 */
    private final long workerIdBits = 5L;
    /** 数据标识id所占的位数 */
    private final long datacenterIdBits = 5L;
    /** 支持的最大机器id,结果是31 (这个移位算法可以很快的计算出几位二进制数所能表示的最大十进制数) */
    private final long maxWorkerId = -1L ^ (-1L << workerIdBits);
    /** 支持的最大数据标识id,结果是31 */
    private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
    /** 序列在id中占的位数 */
    private final long sequenceBits = 12L;
    /** 机器ID向左移12位 */
    private final long workerIdShift = sequenceBits;
    /** 数据标识id向左移17位(12+5) */
    private final long datacenterIdShift = sequenceBits + workerIdBits;
    /** 时间截向左移22位(5+5+12) */
    private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
    /** 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095) */
    private final long sequenceMask = -1L ^ (-1L << sequenceBits);
    /** 工作机器ID(0~31) */
    private long workerId;
    /** 数据中心ID(0~31) */
    private long datacenterId;
    /** 毫秒内序列(0~4095) */
    private long sequence = 0L;
    /** 上次生成ID的时间截 */
    private long lastTimestamp = -1L;
    //==============================Constructors=====================================
    /**
     * 构造函数
     * @param workerId 工作ID (0~31)
     * @param datacenterId 数据中心ID (0~31)
     */
    public SnowflakeIdWorker(long workerId, long datacenterId) {
        if (workerId > maxWorkerId || workerId < 0) {
            throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
        }
        if (datacenterId > maxDatacenterId || datacenterId < 0) {
            throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
        }
        this.workerId = workerId;
        this.datacenterId = datacenterId;
    }
    // ==============================Methods==========================================
    /**
     * 获得下一个ID (该方法是线程安全的)
     * @return SnowflakeId
     */
    public synchronized long nextId() {
        long timestamp = timeGen();
        //如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常
        if (timestamp < lastTimestamp) {
            throw new RuntimeException(
                    String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
        }
        //如果是同一时间生成的,则进行毫秒内序列
        if (lastTimestamp == timestamp) {
            sequence = (sequence + 1) & sequenceMask;
            //毫秒内序列溢出
            if (sequence == 0) {
                //阻塞到下一个毫秒,获得新的时间戳
                timestamp = tilNextMillis(lastTimestamp);
            }
        }
        //时间戳改变,毫秒内序列重置
        else {
            sequence = 0L;
        }
        //上次生成ID的时间截
        lastTimestamp = timestamp;
        //移位并通过或运算拼到一起组成64位的ID
        return ((timestamp - twepoch) << timestampLeftShift) //
                | (datacenterId << datacenterIdShift) //
                | (workerId << workerIdShift) //
                | sequence;
    }
    /**
     * 阻塞到下一个毫秒,直到获得新的时间戳
     * @param lastTimestamp 上次生成ID的时间截
     * @return 当前时间戳
     */
    protected long tilNextMillis(long lastTimestamp) {
        long timestamp = timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = timeGen();
        }
        return timestamp;
    }
    /**
     * 返回以毫秒为单位的当前时间
     * @return 当前时间(毫秒)
     */
    protected long timeGen() {
        return System.currentTimeMillis();
    }
    //==============================Test=============================================
    /** 测试 */
    public static void main(String[] args) {
        SnowflakeIdWorker idWorker = new SnowflakeIdWorker(0, 0);
        for (int i = 0; i < 1000; i++) {
            long id = idWorker.nextId();
            System.out.println(Long.toBinaryString(id));
            System.out.println(id);
        }
    }
}


相关文章
|
运维 Cloud Native Devops
云原生 DevOps CI/CD 概述
【1月更文挑战第7天】云原生 DevOps CI/CD 概述
|
安全 Docker 容器
漏洞扫描–-Awvs&Nessus(Docker版)
漏洞扫描–-Awvs&Nessus(Docker版)
漏洞扫描–-Awvs&Nessus(Docker版)
|
机器学习/深度学习 弹性计算 算法
ArcGIS Pro遥感影像分类:随机森林、支持向量机方法
ArcGIS Pro遥感影像分类:随机森林、支持向量机方法
917 1
|
传感器 搜索推荐 物联网
5G与物联网:构建万物互联的未来世界
【9月更文挑战第11天】5G与物联网的融合正引领我们进入一个万物互联的未来世界。在这个世界中,各种设备将通过网络紧密相连,实现数据的实时传输和处理。这不仅将极大地方便人们的生活和工作,还将推动社会向智能化、数字化迈进。我们有理由相信,在不久的将来,一个更加智能、便捷、高效的世界将呈现在我们面前。
|
C语言 索引
C语言编译环境中的 调试功能及常见错误提示
这篇文章介绍了C语言编译环境中的调试功能,包括快捷键操作、块操作、查找替换等,并详细分析了编译中常见的错误类型及其解决方法,同时提供了常见错误信息的索引供参考。
|
缓存 测试技术 Apache
ab 压测工具:评估你的服务器性能
ApacheBench (AB) 是一款用于 HTTP 性能测试的轻量级工具,可模拟多用户并发访问,评估应用在高负载下的表现。通过命令行参数 `-n` 和 `-c` 分别设置总请求数和并发数,例如 `ab -n 100 -c 2 http://larablog.test/`。
556 1
|
文字识别 安全 数据安全/隐私保护
OfficeBox万彩办公大师v3.1.2便携版
主要包括PDF 转WORD、PDF分割/合并、PDF页面分割/修剪、PDF偏斜纠正、图片转PDF、彩色PDF转换为黑白、PDF图片抽取、扫描PDF转优化、PDF加链接、PDF水印添加/移除、PDF安全加密解密等19种功能强大的PDF处理工具
184 2
OfficeBox万彩办公大师v3.1.2便携版
|
弹性计算 应用服务中间件 数据库
阿里云香港云服务器ECS、轻量应用服务器和云虚拟主机
阿里云香港云服务器可选云服务器ECS、轻量应用服务器和云虚拟主机
9707 0
阿里云香港云服务器ECS、轻量应用服务器和云虚拟主机
|
存储 SQL Oracle
阿里又开源一款数据同步工具 DataX,稳定又高效,好用到爆!(1)
阿里又开源一款数据同步工具 DataX,稳定又高效,好用到爆!
3165 0
|
JavaScript 前端开发 安全
vue中的 render 和 h() 详解
当使用Vue.js进行前端开发时,理解和掌握&quot;render&quot;函数和&quot;h()&quot;函数是非常重要的,因为它们是Vue组件的核心构建和渲染部分 render 和 h()是在Vue.js中常用的两个概念,它们通常用于创建和渲染Vue组件。
661 0