《TensorFlow技术解析与实战》——2.2 基于pip的安装

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介:

本节书摘来异步社区《TensorFlow技术解析与实战》一书中的第2章,第2.2节,作者:李嘉璇,更多章节内容可以访问云栖社区“异步社区”公众号查看。

2.2 基于pip的安装

pip是Python的包管理工具,主要用于PyPI[2](Python Packet Index)上的包。命令简洁方便,包种类丰富,社区完善,并且拥有轻松升级/降级包的能力。

2.2.1 Mac OS环境准备

Mac OS是本书所讲内容依赖的环境,机器配置如图2-3所示。
![screenshot]()

73fd4e021f236946adc770b9d592e5598aa026ed

首先需要依赖Python环境,以及pip命令。这在Mac和Linux系统中一般都有。这里使用的Python版本是2.7.12。TensorFlow 1.1.0版本兼容Python 2和Python 3,读者可以用适合自己的Python环境。

1.安装virtualenv
virtualenv是Python的沙箱工具,用于创建独立的Python环境。我们毕竟是在自己机器上做实验,为了不来回修改各种环境变量,这里用virtualenv为TensorFlow创建一套“隔离”的Python运行环境。

首先,用pip安装virtualenv:

$ pip install virtualenv --upgrade```
安装好后创建一个工作目录,这里直接在home下创建了一个tensorflow文件夹:

$ virtualenv --system-site-packages ~/tensorflow`
然后进入该目录,激活沙箱:

$ cd ~/tensorflow
$ source bin/activate 
(tensorflow) $```
2.在virtualenv里安装TensorFlow
进入沙箱后,执行下面的命令来安装TensorFlow:

(tensorflow) $ pip install tensorflow==1.1.0`
默认安装所需的依赖,直至安装成功。

3.运行TensorFlow
照着官方文档录入一个简单例子:

(tensorflow) $ python
Python 2.7.12 (default, Oct 11 2016, 05:16:02)
[GCC 4.2.1 Compatible Apple LLVM 7.0.2 (clang-700.1.81)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>
>>> import tensorflow as tf
>>> hello = tf.constant('Hello,TensorFlow!')
>>> sess = tf.Session()
>>> print sess.run(hello)
Hello, TensorFlow!```
恭喜,TensorFlow环境已经安装成功了。

注意,每次需要运行TensorFlow程序时,都需要进入tensorflow目录,然后执行source bin/activate命令来激活沙箱。

####2.2.2 Ubuntu/Linux环境准备
使用Ubuntu/Linux的读者可以照着Mac OS的环境准备,先安装virtualenv的沙盒环境,再用pip安装TensorFlow软件包。

TensorFlow的Ubuntu/Linux安装分为CPU版本和GPU版本,下面来分别介绍。

(1)安装仅支持CPU的版本,直接安装如下:

$ pip install tensorflow==1.1.0`
(2)安装支持GPU的版本的前提是已经安装了CUDA SDK,直接使用下面的命令:

$ pip install tensorflow-gpu==1.1.0```
####2.2.3 Windows环境准备
TensorFlow 1.1.0版本支持Windows 7、Windows 10和Server 2016。因为使用Windows PowerShell代替CMD,所以下面的命令均在PowerShell下执行。这里使用的是Windows 10系统,使用微软小娜呼唤出PowerShell,如图2-4所示。
<div style="text-align: center"><img src="https://yqfile.alicdn.com/347768a301fa08aaa6ab5e383d55d95b867ce646.png" width="" height="">
</div>

1.安装Python
TensorFlow在Windows上只支持64位Python 3.5.x,可以通过Python Releases for Windows[3]或Python 3.5 from Anaconda下载并安装Python 3.5.2(注意选择正确的操作系统)。下载后,安装界面如图2-5所示,注意勾选“Add Python 3.5 to PATH”。
<div style="text-align: center"><img src="https://yqfile.alicdn.com/6a5470a6a29b46c05c3ae08b455d5a1fdd7b8c30.png" width="" height="">
</div>

选择Customize installation(自定义安装),进入下一步。如图2-6所示,可以看出Python包自带pip命令。
<div style="text-align: center"><img src="https://yqfile.alicdn.com/eb4db7aa956ba8082b9a65f154c76913e201df18.png" width="" height="">
</div>

然后,等待安装完成,再到PowerShell中输入python,看到进入终端的命令提示则代表python安装成功。在“开始”->“所有程序”下也可以找到Python终端。安装成功后的界面如图2-7所示。
<div style="text-align: center"><img src="https://yqfile.alicdn.com/3b722ec309d53e83ab2dbfc22d2be341cfe411e3.png" width="" height="">
</div>

TensorFlow的Windows安装也分为CPU版本和GPU版本,下面来分别介绍。

(1)CPU版本安装。在PowerShell中执行如下命令,默认安装TensorFlow 1.1.0版本及相关依赖。

C:> pip install tensorflow==1.1.0`
安装完成后如图2-8所示。

95d3ced1529c67f81b9baffed8d2bcf95e89144b

(2)GPU版本安装。如果读者的机器支持安装GPU版本,请先安装如下两个驱动:CUDA[4]和CuDNN[5](后者需要注册NVIDIA用户,并加入CuDNN开发组,然后填若干问卷,才可以下载)。选择下载版本时要注意与CUDA版本匹配。解压后保存至CUDA的安装目录下。然后,安装GPU版本,安装命令如下:

C:\> pip install tensorflow-gpu==1.1.0```
2.运行TensorFlow
在微软小娜中,搜索“python”,直接模糊匹配,调出命令窗口,输入测试代码:

import tensorflow as tf
sess = tf.Session()
a = tf.constant(10)
b = tf.constant(22)
print(sess.run(a + b))
32

```
正确输出结果32,安装完毕。

相关文章
|
3月前
|
并行计算 PyTorch TensorFlow
Ubuntu安装笔记(一):安装显卡驱动、cuda/cudnn、Anaconda、Pytorch、Tensorflow、Opencv、Visdom、FFMPEG、卸载一些不必要的预装软件
这篇文章是关于如何在Ubuntu操作系统上安装显卡驱动、CUDA、CUDNN、Anaconda、PyTorch、TensorFlow、OpenCV、FFMPEG以及卸载不必要的预装软件的详细指南。
5692 3
|
20天前
|
存储 SpringCloudAlibaba Java
【SpringCloud Alibaba系列】一文全面解析Zookeeper安装、常用命令、JavaAPI操作、Watch事件监听、分布式锁、集群搭建、核心理论
一文全面解析Zookeeper安装、常用命令、JavaAPI操作、Watch事件监听、分布式锁、集群搭建、核心理论。
【SpringCloud Alibaba系列】一文全面解析Zookeeper安装、常用命令、JavaAPI操作、Watch事件监听、分布式锁、集群搭建、核心理论
|
2月前
|
机器学习/深度学习 TensorFlow API
机器学习实战:TensorFlow在图像识别中的应用探索
【10月更文挑战第28天】随着深度学习技术的发展,图像识别取得了显著进步。TensorFlow作为Google开源的机器学习框架,凭借其强大的功能和灵活的API,在图像识别任务中广泛应用。本文通过实战案例,探讨TensorFlow在图像识别中的优势与挑战,展示如何使用TensorFlow构建和训练卷积神经网络(CNN),并评估模型的性能。尽管面临学习曲线和资源消耗等挑战,TensorFlow仍展现出广阔的应用前景。
84 5
|
3月前
|
PyTorch TensorFlow 算法框架/工具
Jetson环境安装(一):Ubuntu18.04安装pytorch、opencv、onnx、tensorflow、setuptools、pycuda....
本文提供了在Ubuntu 18.04操作系统的NVIDIA Jetson平台上安装深度学习和计算机视觉相关库的详细步骤,包括PyTorch、OpenCV、ONNX、TensorFlow等。
186 1
Jetson环境安装(一):Ubuntu18.04安装pytorch、opencv、onnx、tensorflow、setuptools、pycuda....
|
2月前
|
机器学习/深度学习 人工智能 TensorFlow
基于TensorFlow的深度学习模型训练与优化实战
基于TensorFlow的深度学习模型训练与优化实战
118 0
|
3月前
|
并行计算 TensorFlow 算法框架/工具
tensorflow安装
tensorflow安装——GPU版
69 2
|
3月前
|
并行计算 PyTorch TensorFlow
环境安装(一):Anaconda3+pytorch1.6.0+cuda10.0+cudnn7.6.4+tensorflow1.15+pycocotools+pydensecrf
这篇文章详细介绍了如何在Anaconda环境下安装和配置深度学习所需的库和工具,包括PyTorch 1.6.0、CUDA 10.0、cuDNN 7.6.4、TensorFlow 1.15、pycocotools和pydensecrf,并提供了pip国内镜像源信息以及Jupyter Notebook和Anaconda的基本操作。
336 0
环境安装(一):Anaconda3+pytorch1.6.0+cuda10.0+cudnn7.6.4+tensorflow1.15+pycocotools+pydensecrf
|
3月前
|
SQL 安全 Windows
SQL安装程序规则错误解析与解决方案
在安装SQL Server时,用户可能会遇到安装程序规则错误的问题,这些错误通常与系统配置、权限设置、依赖项缺失或版本不兼容等因素有关
|
29天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
257 55
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤
本文介绍了 TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤,包括数据准备、模型定义、损失函数与优化器选择、模型训练与评估、模型保存与部署,并展示了构建全连接神经网络的具体示例。此外,还探讨了 TensorFlow 的高级特性,如自动微分、模型可视化和分布式训练,以及其在未来的发展前景。
164 5

推荐镜像

更多