Linux内核之pinctrl子系统

简介: 众所周知,ARM SoC提供了十分丰富的硬件接口,而接口物理上的表现就是一个个的pin(或者叫做pad, finger等)。为了实现丰富的硬件功能,SoC的pin需要实现复用功能,即单独的pin需要提供不同功能,例如,pin0既可以作为GPIO,可以也用于i2c的SCL,通过pin相关的复用寄存器来切换不同的功能。除此之外,软件还可以通过寄存器配置pin相关的电气特性,例如,上拉/下拉、驱动能力、开漏等。

1. 前言


众所周知,ARM SoC提供了十分丰富的硬件接口,而接口物理上的表现就是一个个的pin(或者叫做pad, finger等)。为了实现丰富的硬件功能,SoC的pin需要实现复用功能,即单独的pin需要提供不同功能,例如,pin0既可以作为GPIO,可以也用于i2c的SCL,通过pin相关的复用寄存器来切换不同的功能。除此之外,软件还可以通过寄存器配置pin相关的电气特性,例如,上拉/下拉、驱动能力、开漏等。


Linux kernel 3.0之前的内核,对于pin的功能配置都是通过目标板的配置文件(arch/arm/mach-*)来初始化的,这种配置方式比较繁琐,十分容易出现问题(例如,pin的功能配置冲突)。所以,Linux kernel 3.0之后,实现了DT的板级配置信息管理机制,大大改善了对于pin的配置方式,随之一起实现的就是pinctrl子系统。


pinctrl子系统主要负责以下功能:


  1. 枚举、命名通过板级DTS配置的所有pin;


  1. 对于pin实现复用功能;


  1. 配置pin的电器特性,例如,上拉/下拉、驱动能力、开漏等。;


可见,pinctrl子系统地位相当于kernel全局的pin管理中心,kernel中所有需要pin资源的驱动、子系统都需要通过pinctrl子系统来申请、配置、释放。可将对于pin的操作来说,pinctrl子系统十分重要的。


2. 软件框架


对于不同的SoC,其对于pin管理方式可能不同,所以软件上对于pin的配置方式可能存在较大的差异。对此,pinctrl子系统"求同存异",将pin的管理方式进行了抽象,形成pinctrl-core抽象层,将具体SoC的pin controler隔离出去,形成pinctrl-driver抽象层,pinctrl-core和pinctrl-driver通过抽象接口进行通信。对于pinctrl-core的back-end,即各个需要用到pin的驱动,pinctrl子系统将其抽象为pinctrl-client。


通过上面的软件抽象,pinctrl子系统可以很好的应对不同的SoC pin controler的管理需求,同样可以很好的为不同需要的驱动程序提供pin操作服务。下图简单示意一下pinctrl子系统的软件架构。


网络异常,图片无法展示
|


通过观察pinctrl子系统的软件框架图,可以发现一个问题,那就是GPIO子系统与pinctrl子系统的关系。理论上,GPIO子系统作为pinctrl子系统的使用者,其地位应该和普通的设备驱动没有差别,但是由于以下原因导致GPIO子系统与pinctrl子系统的功能出现了耦合:


  1. 早在kernel 3.0之前,GPIO子系统就已经出现了,其功能也比较明确,就是管理pin的GPIO功能;


  1. pinctrl子系统以及DT机制出现之后,由于GPIO管理的特殊性,并没有将GPIO子系统合并到pinctrl子系统中,而是在pinctrl子系统为GPIO子系统保留了特殊的访问通道,已达到GPIO子系统访问pin的需求。


2.1. pinctrl-core


pinctrl-core抽象层主要的功能就是提供三种服务:


  1. 为SoC pin controler drvier提供底层通信接口的能力;


  1. 为Driver提供访问pin的能力,即driver配置pin复用能、配置引脚的电气特性;


  1. 为GPIO子系统提供GPIO访问的能力;


对于第一种服务来说,其实,对于pinctrl-core抽象层,底层的pin存在方式以及如何对其配置,其完全不会去关心。那么,pinctrl-core如何完成对于pinctrl-driver的控制呢?其实很简单,pinctrl-core与pinctrl-driver是通过pin controller descriptor进行通信的。该结构定义如下:


/**
 * struct pinctrl_desc - pin controller descriptor, register this to pin
 * control subsystem
 * @name: name for the pin controller
 * @pins: an array of pin descriptors describing all the pins handled by
 *  this pin controller
 * @npins: number of descriptors in the array, usually just ARRAY_SIZE()
 *  of the pins field above
 * @pctlops: pin control operation vtable, to support global concepts like
 *  grouping of pins, this is optional.
 * @pmxops: pinmux operations vtable, if you support pinmuxing in your driver
 * @confops: pin config operations vtable, if you support pin configuration in
 *  your driver
 * @owner: module providing the pin controller, used for refcounting
 */
struct pinctrl_desc {
  /*pinctrl-driver属性*/
    const char *name;
    const struct pinctrl_pin_desc *pins;                                                                                                                                                                            
    unsigned int npins;
  /*pinctrl-drive抽象接口*/
    const struct pinctrl_ops *pctlops;
    const struct pinmux_ops  *pmxops;
    const struct pinconf_ops *confops;
    struct module *owner;
};


pinctrl_desc其实对于pinctrl-driver的抽象,其包括了pinctrl-driver所有属性以及其具有的所有能力;这就是典型的面向对象编程的思想,pinctrl-core将pinctrl-driver抽象为pinctrl_desc对象,具体到SoC pinctrl-driver便是该对象一个实例。pinctrl-core通过该实例完成对于系统中所有pin的操作。但是,具体到pinctrl-driver如何完成pin的相关操作,pinctrl-core其实是不关心的。这就将pinctrl-driver的管理的复杂性进行了隔离,与之通信的唯一方式就是预先定义好的抽象接口。这样,不管pinctrl-driver如何变化,只要是按照协议,实例化pinctrl_desc,那么pinctrl-core就始终可以管理系统所有的pin。

其实,对于软件设计最为本质的目的就是消除复杂性,面向对象编程其实是一种很好的解决软件复杂性的思想。不管是何种软件,服务器程序也好、Web前端程序也好亦或是嵌入式驱动程序也好,其面对的问题其实是一样的,那么最终解决问题指导思想也是相似的。最终目的,就是编写出复杂度低,易于维护的软件。


2.2. pinctrl-driver


pinctrl-driver主要为pinctrl-core提供pin的操作能力。对于具体的pinctrl-controler每个SoC的管理方式可能不同,对应到pinctrl-driver上,其实现方式可能会略有不同,但是,所有pinctrl-driver都是为了同一达到同一个目标,那就是把系统所有的pin信息以及对于pin的控制接口实例化成pinctrl_desc,并将pinctrl_desc注册到pinctrl-core中。

pinctrl-driver对于系统pin的管理是通过function和group实现的。下面解释一下function和group的概念,解释之前需要提供一下pinctrl的DTS描述,对于DTS不是很熟悉的可以参考DTS相关的文章:


/ {  
pinctrl: pinctrl@ff770000 {
    compatible = "rockchip,rk3288-pinctrl";
    reg = <0xff770000 0x140>,
          <0xff770140 0x80>,
          <0xff7701c0 0x80>;
    reg-names = "base", "pull", "drv";
    #address-cells = <1>; 
    #size-cells = <1>; 
    ranges;
    gpio0: gpio0@ff750000 {
        compatible = "rockchip,rk3288-gpio-bank0";
        reg =   <0xff750000 0x100>,
            <0xff730084 0x0c>,
                <0xff730064 0x0c>,
            <0xff730070 0x0c>;
        reg-names = "base", "mux_bank0", "pull_bank0", "drv_bank0";
        interrupts = <GIC_SPI 81 IRQ_TYPE_LEVEL_HIGH>;
        clocks = <&clk_gates17 4>;
        gpio-controller;
        #gpio-cells = <2>; 
        interrupt-controller;
        #interrupt-cells = <2>; 
    };
  ......
  gpio0_i2c0 {
        i2c0_sda:i2c0-sda {
            rockchip,pins = <I2C0PMU_SDA>;
            rockchip,pull = <VALUE_PULL_DISABLE>;
            rockchip,drive = <VALUE_DRV_DEFAULT>;
            //rockchip,tristate = <VALUE_TRI_DEFAULT>;
        };
        i2c0_scl:i2c0-scl {
            rockchip,pins = <I2C0PMU_SCL>;
            rockchip,pull = <VALUE_PULL_DISABLE>;
            rockchip,drive = <VALUE_DRV_DEFAULT>;
            //rockchip,tristate = <VALUE_TRI_DEFAULT>;
        };
        i2c0_gpio: i2c0-gpio {
            rockchip,pins = <FUNC_TO_GPIO(I2C0PMU_SDA)>, <FUNC_TO_GPIO(I2C0PMU_SCL)>;
            rockchip,drive = <VALUE_DRV_DEFAULT>;
        };
    };


上面的dts来自于Rockchip 3288的pinctrl配置dts,下面通过该配置,介绍一下function和group的概念:


  • group:所谓的group,如上dts中的i2c0_sda:i2c0_gpio,表示一组pins,这组pins统一表示了一种功能,比如,i2c需要两个pins表示,而spi需要四个引脚表示,而对于UART至少需要两个引脚表示。在定义pins的同时,还会提供对于每个pin的电气特性的配置,如,上下拉电阻、驱动能力等。


  • function:所谓的function,如上dts中的gpio0_i2c0,表示一当前这个pin所代表的的功能。每个function可以被一若干个group所引用,但是,对于每个独立的系统(BPS),只有一个group所引用的pin的function有效,否则会引起pin的function冲突。比如,一个pin既可以作为普通的gpio,也可以作为i2c的sda,那么,一个BPS,这个pin只能代表一个function,即,要么作为普通的gpio,作为i2c的sda。


pinctrl-driver会在驱动的xxxx_probe函数中,将DTS中所定义关于function和group的配置,转换为pinctrl_desc中的数据属性,同时将pinctrl_desc中的对于pin相关操作的回调函数pctlops、pmxops、confops进行初始化,然后将pinctr_desc注册到pinctrl-core中。之后,pinctrl-driver所要做的工作就是静静的等待pinctrl-core的召唤。


至于,pinctrl-driver如何转化pin信息以及pinctrl_desc的抽象接口的具体实现,每个SoC的具体实现各不相同,有兴趣的话可以参考具体的内核代码。


2.3. pinctrl-client


具体到使用系统pin资源的设备驱动程序,pinctrl-core主要提供为其提供两种能力:隶属于本设备的所有pin的function的配置能力和GPIO子系统对于GPIO的配置能力;

2.2节中描述了pinctrl相关的DTS关于function和group的配置,对于具体的设备如何使用这些配置信息呢?还是以一个具体设备的DTS配置为例说明问题,DTS配置如下:


i2c0: i2c@ff650000{                                                                                                                                                                                     
        compatible = "rockchip,rk30-i2c";
        reg = <0xff650000 0x1000>;
        interrupts = <GIC_SPI 60 IRQ_TYPE_LEVEL_HIGH>;
        #address-cells = <1>;
        #size-cells = <0>;
        pinctrl-names = "default", "gpio";
        pinctrl-0 = <&i2c0_sda &i2c0_scl>;
        pinctrl-1 = <&i2c0_gpio>;
        gpios = <&gpio0 GPIO_B7 GPIO_ACTIVE_LOW>,  <&gpio0 GPIO_C0 GPIO_ACTIVE_LOW>;
        clocks = <&clk_gates10 2>;
        rockchip,check-idle = <1>;
        status = "disabled";
    };


上面的是关于i2c0控制器的设备配置信息,我们关心的是下面的配置信息:


pinctrl-names = "default", "gpio";
        pinctrl-0 = <&i2c0_sda &i2c0_scl>;
        pinctrl-1 = <&i2c0_gpio>;


pinctrl-names表示i2c0控制器所处的两种状态,称为pin state, 即:default、gpio;其中,pinctrl-0对应于defaut状态下其关心的function和group,类似的,pinctrl-1对应于gpio状态下其关心的function和group。


pinctrl-names所列出的各个状态与系统电源管理模块的联系比较紧密,由于电源管理的需要,系统可能处于不同的工作状态,相应的设备驱动提供pins不同的工作状态,其目的为了降低系统整体功耗,达到省电的需求,这种需求在消费电子产品中尤为重要。


一般情况下,各个core-driver,例如i2c-core、spi-core会在调用设备驱动程序的probe初始化函数之前,将设备的工作状态设定为default状态。pinctrl-core的consumer.h文件(include/linux/pinctrl/consumer.h)文件提供了配置pin state的接口函数,其原型如下:


extern struct pinctrl * __must_check pinctrl_get(struct device *dev);
extern void pinctrl_put(struct pinctrl *p);
extern struct pinctrl_state * __must_check pinctrl_lookup_state(
                            struct pinctrl *p,
                            const char *name);
extern int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *s);
extern struct pinctrl * __must_check devm_pinctrl_get(struct device *dev);
extern void devm_pinctrl_put(struct pinctrl *p);
extern int pinctrl_pm_select_default_state(struct device *dev);
extern int pinctrl_pm_select_sleep_state(struct device *dev);
extern int pinctrl_pm_select_idle_state(struct device *dev);


对于普通的设备驱动程序来说,一般不会使用到上述的接口,在涉及到电源管理或者子系统驱动程序(i2c-core、spi-core)可能用到上述接口。后续文档(GPIO 子系统、i2c-core-drvier、spi-core-drive)会详细分析。


相关文章
|
12天前
|
算法 Linux
深入探索Linux内核的内存管理机制
本文旨在为读者提供对Linux操作系统内核中内存管理机制的深入理解。通过探讨Linux内核如何高效地分配、回收和优化内存资源,我们揭示了这一复杂系统背后的原理及其对系统性能的影响。不同于常规的摘要,本文将直接进入主题,不包含背景信息或研究目的等标准部分,而是专注于技术细节和实际操作。
|
12天前
|
存储 缓存 网络协议
Linux操作系统的内核优化与性能调优####
本文深入探讨了Linux操作系统内核的优化策略与性能调优方法,旨在为系统管理员和高级用户提供一套实用的指南。通过分析内核参数调整、文件系统选择、内存管理及网络配置等关键方面,本文揭示了如何有效提升Linux系统的稳定性和运行效率。不同于常规摘要仅概述内容的做法,本摘要直接指出文章的核心价值——提供具体可行的优化措施,助力读者实现系统性能的飞跃。 ####
|
13天前
|
监控 算法 Linux
Linux内核锁机制深度剖析与实践优化####
本文作为一篇技术性文章,深入探讨了Linux操作系统内核中锁机制的工作原理、类型及其在并发控制中的应用,旨在为开发者提供关于如何有效利用这些工具来提升系统性能和稳定性的见解。不同于常规摘要的概述性质,本文将直接通过具体案例分析,展示在不同场景下选择合适的锁策略对于解决竞争条件、死锁问题的重要性,以及如何根据实际需求调整锁的粒度以达到最佳效果,为读者呈现一份实用性强的实践指南。 ####
|
13天前
|
缓存 监控 网络协议
Linux操作系统的内核优化与实践####
本文旨在探讨Linux操作系统内核的优化策略与实际应用案例,深入分析内核参数调优、编译选项配置及实时性能监控的方法。通过具体实例讲解如何根据不同应用场景调整内核设置,以提升系统性能和稳定性,为系统管理员和技术爱好者提供实用的优化指南。 ####
|
15天前
|
负载均衡 算法 Linux
深入探索Linux内核调度机制:公平与效率的平衡####
本文旨在剖析Linux操作系统内核中的进程调度机制,特别是其如何通过CFS(完全公平调度器)算法实现多任务环境下资源分配的公平性与系统响应速度之间的微妙平衡。不同于传统摘要的概览性质,本文摘要将直接聚焦于CFS的核心原理、设计目标及面临的挑战,为读者揭开Linux高效调度的秘密。 ####
32 3
|
18天前
|
负载均衡 算法 Linux
深入探索Linux内核调度器:公平与效率的平衡####
本文通过剖析Linux内核调度器的工作机制,揭示了其在多任务处理环境中如何实现时间片轮转、优先级调整及完全公平调度算法(CFS),以达到既公平又高效地分配CPU资源的目标。通过对比FIFO和RR等传统调度策略,本文展示了Linux调度器如何在复杂的计算场景下优化性能,为系统设计师和开发者提供了宝贵的设计思路。 ####
31 6
|
17天前
|
消息中间件 安全 Linux
深入探索Linux操作系统的内核机制
本文旨在为读者提供一个关于Linux操作系统内核机制的全面解析。通过探讨Linux内核的设计哲学、核心组件、以及其如何高效地管理硬件资源和系统操作,本文揭示了Linux之所以成为众多开发者和组织首选操作系统的原因。不同于常规摘要,此处我们不涉及具体代码或技术细节,而是从宏观的角度审视Linux内核的架构和功能,为对Linux感兴趣的读者提供一个高层次的理解框架。
|
19天前
|
缓存 网络协议 Linux
深入探索Linux操作系统的内核优化策略####
本文旨在探讨Linux操作系统内核的优化方法,通过分析当前主流的几种内核优化技术,结合具体案例,阐述如何有效提升系统性能与稳定性。文章首先概述了Linux内核的基本结构,随后详细解析了内核优化的必要性及常用手段,包括编译优化、内核参数调整、内存管理优化等,最后通过实例展示了这些优化技巧在实际场景中的应用效果,为读者提供了一套实用的Linux内核优化指南。 ####
43 1
|
1天前
|
Ubuntu Linux C++
Win10系统上直接使用linux子系统教程(仅需五步!超简单,快速上手)
本文介绍了如何在Windows 10上安装并使用Linux子系统。首先,通过应用商店安装Windows Terminal和Linux系统(如Ubuntu)。接着,在控制面板中启用“适用于Linux的Windows子系统”并重启电脑。最后,在Windows Terminal中选择安装的Linux系统即可开始使用。文中还提供了注意事项和进一步配置的链接。
10 0
|
19天前
|
算法 前端开发 Linux
深入理解Linux内核调度器:CFS与实时性的平衡####
本文旨在探讨Linux操作系统的核心组件之一——完全公平调度器(CFS)的工作原理,分析其在多任务处理环境中如何实现进程间的公平调度,并进一步讨论Linux对于实时性需求的支持策略。不同于传统摘要仅概述内容要点,本部分将简要预览CFS的设计哲学、核心算法以及它是如何通过红黑树数据结构来维护进程执行顺序,同时触及Linux内核为满足不同应用场景下的实时性要求而做出的权衡与优化。 ####