0x00 教程内容
- 单词计数操作流程
- 编写MapReduce单词计数代码及简单解释
- YARN Web UI界面查看
0x01 单词计数
1. 操作流程
a. 建Maven项目
b. 导入依赖包
PS:a、b两步可参考此文章的0x01 新建maven工程:
Java API实现HDFS的相关操作
c. 写代码
d. 打包到服务器
e. 准备一份文件,以空格进行分割,放于HDFS上(可自行修改):
/files/put.txt
我的数据:
shao nai yi nai nai yi yi shao nai nai
f. 启动服务器的HDFS、YARN
g. 执行作业(自行修改):
hadoop jar hadoop-learning-1.0.jar com.shaonaiyi.hadoop.WordCount hdfs://master:9999/files/put.txt hdfs://master:9999/output/wc/
2. 源码
package com.shaonaiyi.hadoop; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import java.io.IOException; /** * @Auther: 邵奈一 * @Date: 2019/03/21 下午 7:02 * @Description: WordCount入门例子之单词计数(Java版) * 使用脚本:hadoop jar hadoop-learning-1.0.jar com.shaonaiyi.hadoop.WordCount hdfs://master:9999/files/put.txt hdfs://master:9999/output/wc/ */ public class WordCount { public static class MyMapper extends Mapper<LongWritable, Text, Text, LongWritable> { LongWritable one = new LongWritable(1); @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String lines = value.toString(); String[] words = lines.split(" "); for (String word: words){ context.write(new Text(word), one); } } } public static class MyReducer extends Reducer<Text, LongWritable, Text, LongWritable> { @Override protected void reduce(Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException { int sum = 0; for (LongWritable value: values){ sum += value.get(); } context.write(key, new LongWritable(sum)); } } public static void main(String[] args) throws Exception{ Configuration configuration = new Configuration(); // 若输出路径有内容,则先删除 Path outputPath = new Path(args[1]); FileSystem fileSystem = FileSystem.get(configuration); if(fileSystem.exists(outputPath)){ fileSystem.delete(outputPath, true); System.out.println("路径存在,但已被删除"); } Job job = Job.getInstance(configuration, "WordCount"); job.setJarByClass(WordCount.class); job.setMapperClass(MyMapper.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(LongWritable.class); job.setReducerClass(MyReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(LongWritable.class); FileInputFormat.setInputPaths(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); System.exit(job.waitForCompletion(true) ? 0 : 1); } }
3. 源码简单解释
a. 可改切割符,目前为空格:
String[] words = lines.split(" ");
b. 分别为第一个参数输入路径args[0]与第二个参数传出路径args[1]:
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
0x02 Web UI界面查看
1. YARN
a. 打开UI界面
http://master:8088
b. 点击RUNNING
、FINISHED
可分别点击查看作业的进度
0xFF 总结
不能在本地直接用IDEA执行,要打包然后上传到服务器上
思考题:请为程序加个足够长的执行时间,然后查看执行作业时,三台服务器上的进程变化。
思路:在Reduce类添加3秒延迟,在主类设置成2个reduce结果,执行代码时统计多几个文件,用*号通配,然后一直观察三天服务器的进程,期间也可以查看YARN的Web UI界面上的Map和Reduce有几个。