1,批量梯度下降法(Batch Gradient Descent) :在更新参数时都使用所有的样本来进行更新。
优点:全局最优解,能保证每一次更新权值,都能降低损失函数;易于并行实现。
缺点:当样本数目很多时,训练过程会很慢。
2,随机梯度下降法(Stochastic Gradient Descent):在更新参数时都使用一个样本来进行更新。每一次跟新参数都用一个样本,更新很多次。如果样本量很大的情况(例如几十万),那么可能只用其中几万条或者几千条的样本,就已经将参数迭代到最优解了,对比上面的批量梯度下降,迭代一次需要用到十几万训练样本,一次迭代不可能最优,如果迭代10次的话就需要遍历训练样本10次,这种方式计算复杂度太高。
优点:训练速度快;
缺点:准确度下降,并不是全局最优;不易于并行实现。从迭代的次数上来看,随机梯度下降法迭代的次数较多,在解空间的搜索过程看起来很盲目。噪音很多,使得它并不是每次迭代都向着整体最优化方向。
3,小批量梯度下降法(Mini-batch Gradient Descen):在更新每一参数时都使用一部分样本来进行更新。为了克服上面两种方法的缺点,又同时兼顾两种方法的优点。
4,三种方法使用的情况:如果样本量比较小,采用批量梯度下降算法。如果样本太大,或者在线算法,使用随机梯度下降算法。在实际的一般情况下,采用小批量梯度下降算法。