《离线和实时大数据开发实战》(五)Hive 优化实践2

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 《离线和实时大数据开发实战》(五)Hive 优化实践2

五、大表 Join 大表优化


如果上述 mapjoin 中小表 dim_seller 很大呢?比如超过了 1GB 的大小?这种就是大表join 大表的问题 。


这类问题相对比较复杂,我们首先引入具体的问题场景,然后基于此介绍各种优化方案。


5.1 问题场景


我们先假设一个问题场景:


A 表为一个汇总表,汇总的是卖家买家最近 N 天交易汇总信息,即对于每个卖家最近 N 天,其每个买家共成交了多少单、总金额是多少,我们这里 N 先只取 90 天,汇总值仅取成交单数 。A 表的字段有:buyer_id 、seller_id 和 pay_cnt_90d 。

B 表为卖家基本信息表,其中包含卖家的一个分层评级信息,比如把卖家分为 6 个级别: S0、S1、S2、S3、S4、S5、S6 。


要获得的结果是每个买家在各个级别卖家的成交比例信息,比如:


某买家 S0:10%; S1:20%; S2:20%; S3:10%; S4:20%; S4:10%; S5:10%。


B表的字段有: seller_id 和 s_level。


正如 mapjoin 中的例子一样,我们的第一反应是直接 join 表并统计:

select 
m.buyer_id 
,sum(pay_cnt_90d) as pay_cnt_90d 
,sum(case when m.s_level=O then pay_cnt_90d end) as pay_cnt_90d_s0 
,sum(case when m.s_level=l then pay_cnt_90d end) as pay_cnt_90d_sl 
,sum(case when m.s_level=2 then pay_cnt_90d end) as pay_cnt_90d_s2 
,sum(case when m.s level=3 then pay cnt 90d end) as pay_cnt_90d_s3
,sum(case when m.s_level=4 then pay_cnt_90d end) as pay_cnt_90d_s4 
,sum(case when m.s_level=S then pay_cnt_90d end) as pay_cnt_90d_s5 
from 
(
select 
a.buyer_id,a.seller_id,b.s_level,a.pay_cnt_90d 
from 
(
select buyer_id ,seller_id,pay_cnt_90d 
from table A 
) a 
join 
(
select seller_id,s_level 
from table B 
) b 
on a.seller_id=b.seller_id 
) m 
group by m.buyer_id


但是此 SQL 会引起数据倾斜,原因在于卖家的二八准则。某些卖家 90 天内会有几百万甚至上千万的买家,但是大部分卖家 90 天内的买家数目并不多, join table_A 和table_B 的时候 ODPS 会按照 Seller_id 进行分发, table_A 的大卖家引起了数据倾斜。


但是本数据倾斜问题无法用 mapjoin table_B 解决,因为卖家有超过千万条、文件大小几个GB ,超过了 mapjoin 表最大 1GB 的限制。


方案 1:转化为 mapjoin


大表无法直接mapjoin,那么是否可以间接呢?实际上此思路有两种途径:限制行和限制列。


限制行: 不需要join B全表,只需要join其在A表中存在的。对于本问题场景,就是过滤掉 90 天内没有成交的卖家。


限制列: 只取需要的字段。

select 
m.buyer_id 
,sum(pay_cnt_90d) as pay_cnt_90d 
,sum(case when m.s_level=O then pay_cnt_90d end) as pay_cnt_90d_s0 
,sum(case when m.s_level=l then pay_cnt_90d end) as pay_cnt_90d_sl 
,sum(case when m.s_level=2 then pay_cnt_90d end) as pay_cnt_90d_s2 
,sum(case when m.s level=3 then pay cnt 90d end) as pay_cnt_90d_s3
,sum(case when m.s_level=4 then pay_cnt_90d end) as pay_cnt_90d_s4 
,sum(case when m.s_level=S then pay_cnt_90d end) as pay_cnt_90d_s5 
from 
(
select /*+mapjoin(b)*/
a.buyer_id,a.seller_id,b.s_level,a.pay_cnt_90d 
from 
(
select buyer_id ,seller_id,pay_cnt_90d 
from table_A 
) a 
join 
(
select b0.seller id,s_level 
from table_B b0
    join
    (select seller_id from table_A group by seller_id) a0
    on b0.seller_id=a0.seller_id
) b 
on a.seller_id=b.seller_id 
) m 
group by m.buyer_id


此方案在一些情况下可以起作用,但很多时候还是无法解决上述问题,因为大部分卖家尽管 90 买家不多 ,但还是有一些的,过滤后的 B

表仍然很大。


方案 2:join 时用 case when 语句


应用场景为: 倾斜的值是明确的而且数量很少,比如null值引起的倾斜。


将这些引起倾斜的值随机分发到Reduce,其主要核心逻辑在于 join 时对这些特殊值concat 随机数,从而达到随机分发的目的。核心逻辑如下:

Select a.user_id,a.order_id,b.user_id 
From table_a a 
Join table_b b 
On (case when a.user_id is null then concat ('hive' ,rand()) else a.user_id end)=b.user_id


Hive已对此进行了优化,不需要修改SQL,只需要设置参数;比如 table_B 的值 “0” 和 “1” 引起倾斜,只需要如下设置:

set hive.optimize.skewinfo=table_B:(seller_id)[("0")("1")];
set hive.optimize.skewjoin=true;


但是方案二还是不能解决上述问题,因为倾斜的卖家大量存在而且动态变化。


方案 3:倍数B表,再取模join


通用方案


是建立一个numbers表,其值只有一列int行,比如从1到10(具体根据倾斜程度确定),然后放大B表10倍,再取模join。

select 
m,buer_id
,sum(pay_cnt_90d) as pay_cnt_90d 
,sum(case when m.s_level=O then pay_cnt_90d end) as pay cnt 90d so 
,sum(case when m.s_level=l then pay cnt 90d end) as pay cnt 90d_sl 
,sum(case when m.s_level=2 then pay_cnt_90d end) as pay_cnt_90d s2 
,sum(case when m.s_level=3 then pay_cnt_90d end) as pay_cnt_90d_s3 
,sum(case when m.s_level=4 then pay_cnt_90d end) as pay cnt 90d s4 
,sum(case when m.s level=S then pay cnt 90d end) as pay cnt 90d s5 
from 
(
select 
a.buyer_id,a.seller_id,b.s_level,a.pay_cnt_90d 
from
(
select buyer_id,seller_id,pay_cnt_90d 
from table_A 
) a 
JOin 
(
select /*+mapjoin(members)*/ 
seller_id,s_level,member 
from table_B 
join 
numbers 
) b 
on a.seller_id=b.seller_id 
and mod(a.pay_cnt_90d,10)+1=b.number 
) m 
group by m.buyer_id


思路核心在于:既然按照seller_id分发会倾斜,那么再人工增加一列进行分发,这样之前倾斜的值的倾斜程度会减少为原来的1/10。可以通过配置numbers表修改放大倍数来降低倾斜程度,但弊端就是B表会膨胀N倍。


专有方案


通用方案思路是把B表的每条数据都放大了相同的倍数,实际上只需要把大卖家放大倍数即可。


首先需要知道大卖家的名单,即先建立一个临时表动态存放每日最新的大卖家(比如dim_big_seller),同时此表的大卖家要膨胀预先设定的倍数(比如1000倍)。


在A表和 B表中分别新建一个 join 列,其逻辑为:如果是大卖家,那么 concat 一个随

机分配正整数(0到预定义的倍数之间,本例为0~1000 );如果不是,保持不变。



相比通用方案,专用方案的运行效率明显好了很多,因为只是将B表中大卖家的行数放大了 1000 倍,其他卖家的行数保持不变,但同时也可以看到代码也复杂了很多,而且必须首先建立大卖家表。


方案 4:动态一分为二


实际上方案 2 和 3 都用到了一分为二的思想,但是都不彻底,对于 mapjoin 不能解决的

问题,终极解决方案就是动态一分为 ,即对倾斜的键值和不倾斜的键值分开处理,不倾

斜的正常 join 即可,倾斜的把它们找出来然后做 mapjoin ,最后 union all 其结果即可。


但是此种解决方案比较麻烦,代码会变得复杂而且需要一个临时表存放倾斜的键值。



-- 对于 90 天买家数超过 10000 的卖家直接 map join ,对于其他卖家正常 join 即可
select 
m.buyer_id 
,surn(pay_cnt_90d) as pay_cnt_90d 
,surn(case when rn.s_level=O then pay_cnt_90d end) as pay_cnt_90d_s0 
,surn(case when rn.s_level=l then pay_cnt_90d end) as pay_cnt_90d_sl 
,surn(case when rn.s_level=2 then pay_cnt_90d end) as pay_cnt_90d_s2 
,surn(case when rn.s_level=3 then pay_cnt_90d end) as pay_cnt_90d_s3 
,surn(case when rn.s_level=4 then pay_cnt_90d end) as pay_cnt_90d_s4 
,surn(case when rn.s_level=S then pay_cnt_90d end) as pay_cnt_90d_s5
from
(
select 
    a.buyer_id,a.seller_id,b.s_level,a.pay_cnt_90d
    from
    (
    select buyer_id,seller_id,pay_cnt_90d
        from table_A
    ) a
    join
    (
      select seller_id ,a.s_level
        from table_A a
        left outer join tmp_table_B b
        on a.user_id = b.seller_id
        where b.seller_id is null
    ) b 
on a.seller id=b.seller id 
union all 
select /*+mapjoin(b)*/ 
a.buyer_id,a.seller_id,b.s_level,a.pay_cnt_90d 
from 
select buyer_id,seller_id,pay_cnt_90d 
from table A 
) a 
join 
select seller_id,s_level 
from table B 
) b 
on a.seller id=b.seller id
) m group by m.buyer_id
) m
group by m.byer_id


总结起来,方案 1、2 以及方案 3 中的通用方案不能保证解决大表 join 大表问题,因为它们都存在种种不同的限制和特定的使用场景。


而方案 3 的专用方案和方案 4 是比较推荐的优化方案,但是它们都需要新建一个临时表来存放每日动态变化的大卖家 。


相对方案 4 来说,方案 3 的专用方案不需要对代码框架进行修改,但是 B 表会被放大,所以一定要是维度表,不然统计结果会是错误的 。 方案 4 的解决方案最通用,自由度最高,但是对代码的更改也最大,甚至需要更改代码框架,可作为终极方案来使用。


我是「云祁」,一枚热爱技术、会写诗的大数据开发猿。

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
1月前
|
存储 分布式计算 大数据
MaxCompute聚簇优化推荐功能发布,单日节省2PB Shuffle、7000+CU!
MaxCompute全新推出了聚簇优化推荐功能。该功能基于 31 天历史运行数据,每日自动输出全局最优 Hash Cluster Key,对于10 GB以上的大型Shuffle场景,这一功能将直接带来显著的成本优化。
111 3
|
1月前
|
数据采集 SQL 搜索推荐
大数据之路:阿里巴巴大数据实践——OneData数据中台体系
OneData是阿里巴巴内部实现数据整合与管理的方法体系与工具,旨在解决指标混乱、数据孤岛等问题。通过规范定义、模型设计与工具平台三层架构,实现数据标准化与高效开发,提升数据质量与应用效率。
大数据之路:阿里巴巴大数据实践——OneData数据中台体系
|
1月前
|
存储 SQL 分布式计算
大数据之路:阿里巴巴大数据实践——元数据与计算管理
本内容系统讲解了大数据体系中的元数据管理与计算优化。元数据部分涵盖技术、业务与管理元数据的分类及平台工具,并介绍血缘捕获、智能推荐与冷热分级等技术创新。元数据应用于数据标签、门户管理与建模分析。计算管理方面,深入探讨资源调度失衡、数据倾斜、小文件及长尾任务等问题,提出HBO与CBO优化策略及任务治理方案,全面提升资源利用率与任务执行效率。
|
1月前
|
存储 监控 大数据
大数据之路:阿里巴巴大数据实践——事实表设计
事实表是数据仓库核心,用于记录可度量的业务事件,支持高性能查询与低成本存储。主要包含事务事实表(记录原子事件)、周期快照表(捕获状态)和累积快照表(追踪流程)。设计需遵循粒度统一、事实可加性、一致性等原则,提升扩展性与分析效率。
|
1月前
|
机器学习/深度学习 数据采集 搜索推荐
你以为是“说走就走”?其实是“算好才走”:大数据是怎么悄悄优化旅游体验的?
你以为是“说走就走”?其实是“算好才走”:大数据是怎么悄悄优化旅游体验的?
55 0
|
2月前
|
存储 SQL Apache
网易云信 x Doris:降本70%、提速11倍, 统一 ES/InfluxDB/Hive 多技术栈的落地实践
网易云信引入 Apache Doris 统一了原有 Elasticsearch、InfluxDB 和 Hive 多技术栈系统。凭借其高性能和易扩展的特点,提供一站式的数据存储和分析服务。实现机器成本降低 70%、实时场景查询提速 11 倍、离线任务耗时缩短 80% 的显著收益。
197 0
|
2月前
|
机器学习/深度学习 分布式计算 Java
Java 大视界 -- Java 大数据机器学习模型在遥感图像土地利用分类中的优化与应用(199)
本文探讨了Java大数据与机器学习模型在遥感图像土地利用分类中的优化与应用。面对传统方法效率低、精度差的问题,结合Hadoop、Spark与深度学习框架,实现了高效、精准的分类。通过实际案例展示了Java在数据处理、模型融合与参数调优中的强大能力,推动遥感图像分类迈向新高度。
|
2月前
|
存储 搜索推荐 算法
Java 大视界 -- Java 大数据在智慧文旅旅游线路规划与游客流量均衡调控中的应用实践(196)
本实践案例深入探讨了Java大数据技术在智慧文旅中的创新应用,聚焦旅游线路规划与游客流量调控难题。通过整合多源数据、构建用户画像、开发个性化推荐算法及流量预测模型,实现了旅游线路的精准推荐与流量的科学调控。在某旅游城市的落地实践中,游客满意度显著提升,景区流量分布更加均衡,充分展现了Java大数据技术在推动文旅产业智能化升级中的核心价值与广阔前景。
|
2月前
|
机器学习/深度学习 存储 Java
Java 大视界 -- Java 大数据机器学习模型在游戏用户行为分析与游戏平衡优化中的应用(190)
本文探讨了Java大数据与机器学习模型在游戏用户行为分析及游戏平衡优化中的应用。通过数据采集、预处理与聚类分析,开发者可深入洞察玩家行为特征,构建个性化运营策略。同时,利用回归模型优化游戏数值与付费机制,提升游戏公平性与用户体验。
|
SQL 分布式计算 大数据
MaxCompute 聚簇优化推荐简介
在大数据计算中,Shuffle 是资源消耗最大的环节之一。MaxCompute 提供聚簇优化推荐功能,通过调整 Cluster 表结构,有效减少 Shuffle 量,显著提升作业性能并节省计算资源。实际案例显示,该功能可帮助用户每日节省数 PB 的 Shuffle 数据量及数千 CU 的计算成本。
72 0

热门文章

最新文章