《Python数据分析》一2.9 基于位置列表的索引方法

简介:

本节书摘来自异步社区《Python数据分析》一书中的第2章,第2.9节,作者【印尼】Ivan Idris,更多章节内容可以访问云栖社区“异步社区”公众号查看

2.9 基于位置列表的索引方法

下面利用ix_()函数将莱娜照片中的像素完全打乱。注意,本例中的代码没有提供注释。完整的代码请参考本书代码包中的ix.py文件。

import scipy.misc
import matplotlib.pyplot as plt
import numpy as np

lena = scipy.misc.lena()
xmax = lena.shape[0]
ymax = lena.shape[1]

def shuffle_indices(size):
  arr = np.arange(size)
  np.random.shuffle(arr)

  return arr

xindices = shuffle_indices(xmax)
np.testing.assert_equal(len(xindices), xmax)
yindices = shuffle_indices(ymax)
np.testing.assert_equal(len(yindices), ymax)
plt.imshow(lena[np.ix_(xindices, yindices)])
plt.show()

这个函数可以根据多个序列生成一个网格,它需要一个一维序列作为参数,并返回一个由NumPy数组构成的元组。

In : ix_([0,1], [2,3])
Out:
(array([[0],[1]]), array([[2, 3]]))

利用位置列表索引NumPy数组的过程如下所示。

1.打乱数组的索引。

用numpy.random子程序包中的shuffle()函数把数组中的元素按随机的索引号重新排列,使得数组产生相应的变化。

def shuffle_indices(size):
  arr = np.arange(size)
  np.random.shuffle(arr)

  return arr

2.使用下面的代码画出打乱后的索引。

plt.imshow(lena[np.ix_(xindices, yindices)])

3.莱娜照片的像素被完全打乱后,变成图2-6所示的样子。


6252146f31b73899107508718a4705b026a969ef
相关文章
|
22天前
|
运维 监控 算法
时间序列异常检测:MSET-SPRT组合方法的原理和Python代码实现
MSET-SPRT是一种结合多元状态估计技术(MSET)与序贯概率比检验(SPRT)的混合框架,专为高维度、强关联数据流的异常检测设计。MSET通过历史数据建模估计系统预期状态,SPRT基于统计推断判定偏差显著性,二者协同实现精准高效的异常识别。本文以Python为例,展示其在模拟数据中的应用,证明其在工业监控、设备健康管理及网络安全等领域的可靠性与有效性。
550 13
时间序列异常检测:MSET-SPRT组合方法的原理和Python代码实现
|
2月前
|
JSON 数据可视化 API
Python 中调用 DeepSeek-R1 API的方法介绍,图文教程
本教程详细介绍了如何使用 Python 调用 DeepSeek 的 R1 大模型 API,适合编程新手。首先登录 DeepSeek 控制台获取 API Key,安装 Python 和 requests 库后,编写基础调用代码并运行。文末包含常见问题解答和更简单的可视化调用方法,建议收藏备用。 原文链接:[如何使用 Python 调用 DeepSeek-R1 API?](https://apifox.com/apiskills/how-to-call-the-deepseek-r1-api-using-python/)
|
8天前
|
Python
[oeasy]python086方法_method_函数_function_区别
本文详细解析了Python中方法(method)与函数(function)的区别。通过回顾列表操作如`append`,以及随机模块的使用,介绍了方法作为类的成员需要通过实例调用的特点。对比内建函数如`print`和`input`,它们无需对象即可直接调用。总结指出方法需基于对象调用且包含`self`参数,而函数独立存在无需`self`。最后提供了学习资源链接,方便进一步探索。
46 17
|
2天前
|
存储 缓存 文件存储
uv安装python及其依赖的加速方法
国内在使用uv的时候,可能会涉及到装python的速度太慢的问题,为了解决这个问题,可以使用`UV_PYTHON_INSTALL_MIRROR`这个环境变量。除此以外,对于多人协作场景,`UV_CACHE_DIR`也是一个有用的环境变量。本文会介绍这两个变量。
104 9
|
14天前
|
开发者 索引 Python
从命名约定到特殊方法,Python下划线符号的妙用!
下划线(`_`)是Python开发者日常接触的重要符号,其含义和应用场景多样。本文全面解析了Python中下划线的不同用法,包括单下划线作为临时变量、国际化翻译函数、交互式解释器特殊变量;单下划线前缀表示保护成员;单下划线后缀避免关键字冲突;双下划线前缀触发名称改写;双下划线前后缀定义特殊方法等。此外,还介绍了数字分隔符、模式匹配通配符等新特性,并总结了下划线使用的最佳实践与常见问题解答。通过本文,读者可深入了解下划线在Python中的多重角色及其设计哲学。
43 2
|
3月前
|
人工智能 自然语言处理 算法
随机的暴力美学蒙特卡洛方法 | python小知识
蒙特卡洛方法是一种基于随机采样的计算算法,广泛应用于物理学、金融、工程等领域。它通过重复随机采样来解决复杂问题,尤其适用于难以用解析方法求解的情况。该方法起源于二战期间的曼哈顿计划,由斯坦尼斯拉夫·乌拉姆等人提出。核心思想是通过大量随机样本来近似真实结果,如估算π值的经典示例。蒙特卡洛树搜索(MCTS)是其高级应用,常用于游戏AI和决策优化。Python中可通过简单代码实现蒙特卡洛方法,展示其在文本生成等领域的潜力。随着计算能力提升,蒙特卡洛方法的应用范围不断扩大,成为处理不确定性和复杂系统的重要工具。
132 21
|
3月前
|
数据挖掘 数据处理 开发者
Python3 自定义排序详解:方法与示例
Python的排序功能强大且灵活,主要通过`sorted()`函数和列表的`sort()`方法实现。两者均支持`key`参数自定义排序规则。本文详细介绍了基础排序、按字符串长度或元组元素排序、降序排序、多条件排序及使用`lambda`表达式和`functools.cmp_to_key`进行复杂排序。通过示例展示了如何对简单数据类型、字典、类对象及复杂数据结构(如列车信息)进行排序。掌握这些技巧可以显著提升数据处理能力,为编程提供更强大的支持。
85 10
|
2月前
|
SQL 关系型数据库 MySQL
Python中使用MySQL模糊查询的方法
本文介绍了两种使用Python进行MySQL模糊查询的方法:一是使用`pymysql`库,二是使用`mysql-connector-python`库。通过这两种方法,可以连接MySQL数据库并执行模糊查询。具体步骤包括安装库、配置数据库连接参数、编写SQL查询语句以及处理查询结果。文中详细展示了代码示例,并提供了注意事项,如替换数据库连接信息、正确使用通配符和关闭数据库连接等。确保在实际应用中注意SQL注入风险,使用参数化查询以保障安全性。
|
3月前
|
数据采集 SQL 数据挖掘
电商数据分析的方法
电商数据分析涵盖从业务需求理解到数据呈现的全流程。初学者应循序渐进,掌握数据清洗、转换等技能,Python是重要工具。社交媒体营销分析关注用户参与度和KOL影响。实战教程如《2019电商数据分析师实战项目》提供Excel、SQL及Tableau应用案例,帮助巩固理论知识。代码示例展示了如何使用Pandas和SQLAlchemy进行销售数据分析,计算转化率。 (注:联系方式和感谢语已省略以符合要求)
电商数据分析的方法
|
4月前
|
安全
Python-打印99乘法表的两种方法
本文详细介绍了两种实现99乘法表的方法:使用`while`循环和`for`循环。每种方法都包括了步骤解析、代码演示及优缺点分析。文章旨在帮助编程初学者理解和掌握循环结构的应用,内容通俗易懂,适合编程新手阅读。博主表示欢迎读者反馈,共同进步。