《Python数据分析》一2.7 创建数组的视图和拷贝

简介:

本节书摘来自异步社区《Python数据分析》一书中的第2章,第2.7节,作者【印尼】Ivan Idris,更多章节内容可以访问云栖社区“异步社区”公众号查看

2.7 创建数组的视图和拷贝

在介绍ravel()函数的示例中,我们提到了视图的概念。不过,请不要与数据库中的视图概念混淆。在NumPy的世界里,视图不是只读的,因为你不可能守着基础数据一动不动。关键在于要知道,当前处理的是共享的数组视图,还是数组数据的副本。举例来说,可以取数组的一部分来生成视图。这意味着,如果先将数组的某部分赋给一个变量,然后修改原数组中相应位置的数据,那么这个变量的值也会随之变化。我们可以根据著名的莱娜(Lena)照片来创建数组,然后创建视图,随后修改它。这里,莱娜肖像的数组是从SciPy函数获得的。

1.创建一份莱娜数组的副本。

acopy = lena.copy()

2.为该数组创建一个视图。

aview = lena.view()

3.通过flat迭代器将视图中所有的值全部设为0``。

aview.flat = 0

最后,只有一幅图片可以看到该模特,而另一幅图片根本看不到她的影子,如图2-4所示。


284f9c392fce99953ce3fbea4d07cd02e6bb79d3

下面的代码(为了节约版面,这里没有注释,完整代码请看copy_view.py文件)很好地展示了数组的视图和副本的特点。

import scipy.misc
import matplotlib.pyplot as plt

lena = scipy.misc.lena()
acopy = lena.copy()
aview = lena.view()
plt.subplot(221)
plt.imshow(lena)
plt.subplot(222)
plt.imshow(acopy)
plt.subplot(223)
plt.imshow(aview)
aview.flat = 0
plt.subplot(224)
plt.imshow(aview)
plt.show()

可见,在程序结束部分修改视图,同时改变了原来的莱娜数组。这导致3副图片全部变蓝(如果阅读的是本书的印刷版,也可能显示为黑色),而复制的数组则没有任何变化。所以一定要记住:视图不是只读的。

相关文章
|
2月前
|
存储 Java 数据处理
(numpy)Python做数据处理必备框架!(一):认识numpy;从概念层面开始学习ndarray数组:形状、数组转置、数值范围、矩阵...
Numpy是什么? numpy是Python中科学计算的基础包。 它是一个Python库,提供多维数组对象、各种派生对象(例如掩码数组和矩阵)以及用于对数组进行快速操作的各种方法,包括数学、逻辑、形状操作、排序、选择、I/0 、离散傅里叶变换、基本线性代数、基本统计运算、随机模拟等等。 Numpy能做什么? numpy的部分功能如下: ndarray,一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组 用于对整组数据进行快速运算的标准数学函数(无需编写循环)。 用于读写磁盘数据的工具以及用于操作内存映射文件的工具。 线性代数、随机数生成以及傅里叶变换功能。 用于集成由C、C++
359 1
|
3月前
|
数据采集 数据可视化 数据挖掘
Python数据分析实战:Pandas处理结构化数据的核心技巧
在数据驱动时代,结构化数据是分析决策的基础。Python的Pandas库凭借其高效的数据结构和丰富的功能,成为处理结构化数据的利器。本文通过真实场景和代码示例,讲解Pandas的核心操作,包括数据加载、清洗、转换、分析与性能优化,帮助你从数据中提取有价值的洞察,提升数据处理效率。
212 3
|
5月前
|
数据采集 数据可视化 搜索推荐
Python数据分析全流程指南:从数据采集到可视化呈现的实战解析
在数字化转型中,数据分析成为企业决策核心,而Python凭借其强大生态和简洁语法成为首选工具。本文通过实战案例详解数据分析全流程,涵盖数据采集、清洗、探索、建模、可视化及自动化部署,帮助读者掌握从数据到业务价值的完整技能链。
671 0
|
2月前
|
数据可视化 大数据 关系型数据库
基于python大数据技术的医疗数据分析与研究
在数字化时代,医疗数据呈爆炸式增长,涵盖患者信息、检查指标、生活方式等。大数据技术助力疾病预测、资源优化与智慧医疗发展,结合Python、MySQL与B/S架构,推动医疗系统高效实现。
|
3月前
|
数据可视化 数据挖掘 大数据
基于python大数据的水文数据分析可视化系统
本研究针对水文数据分析中的整合难、分析单一和可视化不足等问题,提出构建基于Python的水文数据分析可视化系统。通过整合多源数据,结合大数据、云计算与人工智能技术,实现水文数据的高效处理、深度挖掘与直观展示,为水资源管理、防洪减灾和生态保护提供科学决策支持,具有重要的应用价值和社会意义。
|
4月前
|
存储 数据挖掘 大数据
基于python大数据的用户行为数据分析系统
本系统基于Python大数据技术,深入研究用户行为数据分析,结合Pandas、NumPy等工具提升数据处理效率,利用B/S架构与MySQL数据库实现高效存储与访问。研究涵盖技术背景、学术与商业意义、国内外研究现状及PyCharm、Python语言等关键技术,助力企业精准营销与产品优化,具有广泛的应用前景与社会价值。
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
【10月更文挑战第42天】本文是一篇技术性文章,旨在为初学者提供一份关于如何使用Python进行数据分析的入门指南。我们将从安装必要的工具开始,然后逐步介绍如何导入数据、处理数据、进行数据可视化以及建立预测模型。本文的目标是帮助读者理解数据分析的基本步骤和方法,并通过实际的代码示例来加深理解。
245 3
|
7月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据分析,别再死磕Excel了!
Python数据分析,别再死磕Excel了!
330 2
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
1199 4
数据分析的 10 个最佳 Python 库

热门文章

最新文章

推荐镜像

更多