ZZULIOJ-1091,童年生活二三事(多实例测试)(Python)

简介: ZZULIOJ-1091,童年生活二三事(多实例测试)(Python)

题目描述:


Redraiment小时候走路喜欢蹦蹦跳跳,他最喜欢在楼梯上跳来跳去。 但年幼的他一次只能走上一阶或者一下子蹦上两阶。 现在一共有N阶台阶,请你计算一下Redraiment从第0阶到第N阶共有几种走法。  


输入:


输入包括多组数据。 每组数据包括一行:N(1≤N≤40)。 输入以0结束  


输出:  



对应每个输入包括一个输出。 为redraiment到达第n阶不同走法的数量。  


样例输入:


1

3

0


样例输出:



1

3


程序代码:


a={}
a[1]=1
a[2]=2
for i in range(3,41) :
            a[i]=a[i-1]+a[i-2]
while True :
            n=eval(input())
            if n==0 :
                        break
            print(a[n])
相关文章
|
8天前
|
安全 关系型数据库 测试技术
学习Python Web开发的安全测试需要具备哪些知识?
学习Python Web开发的安全测试需要具备哪些知识?
23 4
|
2月前
|
Web App开发 前端开发 JavaScript
探索Python科学计算的边界:利用Selenium进行Web应用性能测试与优化
【10月更文挑战第6天】随着互联网技术的发展,Web应用程序已经成为人们日常生活和工作中不可或缺的一部分。这些应用不仅需要提供丰富的功能,还必须具备良好的性能表现以保证用户体验。性能测试是确保Web应用能够快速响应用户请求并处理大量并发访问的关键步骤之一。本文将探讨如何使用Python结合Selenium来进行Web应用的性能测试,并通过实际代码示例展示如何识别瓶颈及优化应用。
124 5
|
2月前
|
测试技术 持续交付 Apache
Python性能测试新风尚:JMeter遇上Locust,性能分析不再难🧐
【10月更文挑战第1天】Python性能测试新风尚:JMeter遇上Locust,性能分析不再难🧐
144 3
|
2月前
|
安全 Linux 网络安全
Kali 渗透测试:基于结构化异常处理的渗透-使用Python编写渗透模块(一)
Kali 渗透测试:基于结构化异常处理的渗透-使用Python编写渗透模块(一)
|
2月前
|
Python Windows 网络安全
Kali 渗透测试:基于结构化异常处理的渗透-使用Python编写渗透模块(二)
Kali 渗透测试:基于结构化异常处理的渗透-使用Python编写渗透模块(二)
|
18天前
|
Java 测试技术 持续交付
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
本文重点讲解如何搭建App自动化测试框架的思路,而非完整源码。主要内容包括实现目的、框架设计、环境依赖和框架的主要组成部分。适用于初学者,旨在帮助其快速掌握App自动化测试的基本技能。文中详细介绍了从需求分析到技术栈选择,再到具体模块的封装与实现,包括登录、截图、日志、测试报告和邮件服务等。同时提供了运行效果的展示,便于理解和实践。
63 4
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
|
17天前
|
数据采集 自然语言处理 数据库
深入体验阿里云通义灵码:测试与实例展示
阿里云通义灵码是一款强大的代码生成工具,支持自然语言描述需求,快速生成高质量代码。它在测试、代码质量和用户体验方面表现出色,能够高效地生成 Python 和 Java 等语言的代码,助力开发者提升开发效率和代码质量。无论是新手还是资深开发者,都能从中受益匪浅。
深入体验阿里云通义灵码:测试与实例展示
|
21天前
|
测试技术 持续交付 Apache
Python性能测试新风尚:JMeter遇上Locust,性能分析不再难🧐
Python性能测试新风尚:JMeter遇上Locust,性能分析不再难🧐
45 3
|
20天前
|
缓存 测试技术 Apache
告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
36 1
|
2月前
|
机器学习/深度学习 JSON 算法
实例分割笔记(一): 使用YOLOv5-Seg对图像进行分割检测完整版(从自定义数据集到测试验证的完整流程)
本文详细介绍了使用YOLOv5-Seg模型进行图像分割的完整流程,包括图像分割的基础知识、YOLOv5-Seg模型的特点、环境搭建、数据集准备、模型训练、验证、测试以及评价指标。通过实例代码,指导读者从自定义数据集开始,直至模型的测试验证,适合深度学习领域的研究者和开发者参考。
513 3
实例分割笔记(一): 使用YOLOv5-Seg对图像进行分割检测完整版(从自定义数据集到测试验证的完整流程)
下一篇
无影云桌面