《Hadoop实战手册》一1.8 从MongoDB导入数据到HDFS

本文涉及的产品
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
简介:

本节书摘来异步社区《Hadoop实战手册》一书中的第1章,第1.8节,作者: 【美】Jonathan R. Owens , Jon Lentz , Brian Femiano 译者: 傅杰 , 赵磊 , 卢学裕 责编: 杨海玲,更多章节内容可以访问云栖社区“异步社区”公众号查看。

1.8 从MongoDB导入数据到HDFS

本节将使用MongoInputFormat类加载MongoDB中的数据导入HDFS中。

准备工作
使用Mongo Hadoop适配器最简单的方法是从GitHub上克隆Mongo-Hadoop工程,并且将该工程编译到一个特定的Hadoop版本。克隆该工程需要安装一个Git客户端。

本节假定你使用的Hadoop版本是CDH3。

Git客户端官方的下载地址是:http://git-scm.com/downloads

在Windows操作系统上可以通过http://windows.github.com/访问GitHub。

在Mac操作系统上可以通过http://mac.github.com/访问GitHub。

可以通过https://github.com/mongodb/mongo-hadoop获取到Mongo Hadoop适配器。该工程需要编译在特定的Hadoop版本上。编译完的JAR文件需要复制到Hadoop集群每个节点的$HADOOP_HOME/lib目录下。

Mongo Java驱动包也需要安装到Hadoop集群每个节点的$HADOOP_HOME/lib目录下。该驱动包可从https://github.com/mongodb/mongo-java-driver/downloads下载。

操作步骤
完成下面步骤实现将MongoDB中的数据复制到HDFS中。

1.通过下面的命令实现克隆mongo-hadoop工程:

git clone https://github.com/mongodb/mongo-hadoop.git

2.切换到稳定发布的1.0分支版本:

git checkout release-1.0

3.必须保持mongo-hadoop与Hadoop的版本一致。使用文本编辑器打开mongo-hadoop克隆目录下的build.sbt文件,修改下面这行:

hadoopRelease in ThisBuild := "default"

修改为:

hadoopRelease in ThisBuild := "cdh3"

4.编译mongo-hadoop:

./sbt package.

这将会在core/target文件夹下生成一个名为mongo-hadoop-core_cdh3u3-1.0.0.jar的JAR文件。

5.从https://github.com/mongodb/mongo-java-driver/downloads下载MongoDB 2.8.0版本的Java驱动包。

6.复制mongo-hadoop和MongoDB Java驱动包到Hadoop集群每个节点的$HADOOP_HOME/lib:

cp mongo-hadoop-core_cdh3u3-1.0.0.jar mongo-2.8.0.jar $HADOOP_HOME/lib

7.编写MapReduce读取MongoDB数据库中的数据并写入HDFS中:

import java.io.*; 
import org.apache.commons.logging.*; 
import org.apache.hadoop.conf.*; 
import org.apache.hadoop.fs.Path; 
import org.apache.hadoop.io.*; 
import org.apache.hadoop.mapreduce.lib.output.*; 
import org.apache.hadoop.mapreduce.*; 
import org.bson.*; 

import com.mongodb.hadoop.*; 
import com.mongodb.hadoop.util.*; 

public class ImportWeblogsFromMongo { 

   private static final Log log = LogFactory. 
getLog(ImportWeblogsFrom Mongo.class);

   public static class ReadWeblogsFromMongo extends Mapper<Object,   
BSONObject, Text, Text>{

      public void map(Object key, BSONObject value, Context context) throws   
IOException, InterruptedException{ 
         System.out.println("Key: " + key); 
         System.out.println("Value: " + value); 

         String md5 = value.get("md5").toString(); 
         String url = value.get("url").toString(); 
         String date = value.get("date").toString(); 
         String time = value.get("time").toString(); 
         String ip = value.get("ip").toString(); 
         String output = "\t" + url + "\t" + date + "\t" + 
                          time + "\t" + ip; 
         context.write( new Text(md5), new Text(output)); 
    } 
}
public static void main(String[] args) throws Exception{ 
   final Configuration conf = new Configuration(); 
   MongoConfigUtil.setInputURI(conf, "mongodb://<HOST>:<PORT>/test.weblogs"); 
   MongoConfigUtil.setCreateInputSplits(conf, false); 
   System.out.println("Configuration: " + conf); 
   final Job job = new Job(conf, "Mongo Import"); 
   Path out = new Path("/data/weblogs/mongo_import"); 
   FileOutputFormat.setOutputPath(job, out); 
   job.setJarByClass(ImportWeblogsFromMongo.class); 
   job.setMapperClass(ReadWeblogsFromMongo.class); 
   job.setOutputKeyClass(Text.class); 
   job.setOutputValueClass(Text.class); 
   job.setInputFormatClass(MongoInputFormat.class); 
   job.setOutputFormatClass(TextOutputFormat.class); 
   job.setNumReduceTasks(0); 
   System.exit(job.waitForCompletion(true) ? 0 : 1 ); 
   } 
}

这个只有map的作业用到了Mongo Hadoop适配器提供的几个类。从HDFS读入的数据会被转换成一个BSONObject对象。该类描述的是一个二进制的JSON值。MongoDB使用这些BSONObject对象来有效地序列化、传输和存储数据。

Mongo Hadoop适配器还提供了一个方便的工具类MongoConfigUtil,使得可以把MongoDB当成是一个文件系统来访问。

8.导出为一个可运行的JAR文件,并运行该作业:

hadoop jar ImportWeblogsFromMongo.jar

9.验证weblogs数据是否已经导入HDFS中:

hadoop fs -ls /data/weblogs/mongo_import

工作原理
Mongo Hadoop适配器提供了一种新的兼容Hadoop的文件系统实现,包括MongoInputFormat和MongoOutputFormat。这些抽象实现使得访问MongoDB和访问任何兼容Hadoop的文件系统一样。

相关文章
|
8月前
|
XML 存储 分布式计算
【赵渝强老师】史上最详细:Hadoop HDFS的体系架构
HDFS(Hadoop分布式文件系统)由三个核心组件构成:NameNode、DataNode和SecondaryNameNode。NameNode负责管理文件系统的命名空间和客户端请求,维护元数据文件fsimage和edits;DataNode存储实际的数据块,默认大小为128MB;SecondaryNameNode定期合并edits日志到fsimage中,但不作为NameNode的热备份。通过这些组件的协同工作,HDFS实现了高效、可靠的大规模数据存储与管理。
906 70
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
495 6
|
SQL 分布式计算 关系型数据库
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
323 0
|
SQL 分布式计算 关系型数据库
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
194 0
|
4月前
|
NoSQL MongoDB 数据库
数据库数据恢复—MongoDB数据库数据恢复案例
MongoDB数据库数据恢复环境: 一台操作系统为Windows Server的虚拟机上部署MongoDB数据库。 MongoDB数据库故障: 工作人员在MongoDB服务仍然开启的情况下将MongoDB数据库文件拷贝到其他分区,数据复制完成后将MongoDB数据库原先所在的分区进行了格式化操作。 结果发现拷贝过去的数据无法使用。管理员又将数据拷贝回原始分区,MongoDB服务仍然无法使用,报错“Windows无法启动MongoDB服务(位于 本地计算机 上)错误1067:进程意外终止。”
|
4月前
|
缓存 NoSQL Linux
在CentOS 7系统中彻底移除MongoDB数据库的步骤
以上步骤完成后,MongoDB应该会从您的CentOS 7系统中被彻底移除。在执行上述操作前,请确保已经备份好所有重要数据以防丢失。这些步骤操作需要一些基本的Linux系统管理知识,若您对某一步骤不是非常清楚,请先进行必要的学习或咨询专业人士。在执行系统级操作时,推荐在实施前创建系统快照或备份,以便在出现问题时能够恢复到原先的状态。
420 79
|
4月前
|
存储 NoSQL MongoDB
MongoDB数据库详解-针对大型分布式项目采用的原因以及基础原理和发展-卓伊凡|贝贝|莉莉
MongoDB数据库详解-针对大型分布式项目采用的原因以及基础原理和发展-卓伊凡|贝贝|莉莉
271 8
MongoDB数据库详解-针对大型分布式项目采用的原因以及基础原理和发展-卓伊凡|贝贝|莉莉
|
3月前
|
运维 NoSQL 容灾
告别运维噩梦:手把手教你将自建 MongoDB 平滑迁移至云数据库
程序员为何逃离自建MongoDB?扩容困难、运维复杂、高可用性差成痛点。阿里云MongoDB提供分钟级扩容、自动诊断与高可用保障,助力企业高效运维、降本增效,实现数据库“无感运维”。
|
7月前
|
NoSQL MongoDB 数据库
数据库数据恢复——MongoDB数据库服务无法启动的数据恢复案例
MongoDB数据库数据恢复环境: 一台Windows Server操作系统虚拟机上部署MongoDB数据库。 MongoDB数据库故障: 管理员在未关闭MongoDB服务的情况下拷贝数据库文件。将MongoDB数据库文件拷贝到其他分区后,对MongoDB数据库所在原分区进行了格式化操作。格式化完成后将数据库文件拷回原分区,并重新启动MongoDB服务。发现服务无法启动并报错。
|
8月前
|
存储 NoSQL MongoDB
微服务——MongoDB常用命令1——数据库操作
本节介绍了 MongoDB 中数据库的选择、创建与删除操作。使用 `use 数据库名称` 可选择或创建数据库,若数据库不存在则自动创建。通过 `show dbs` 或 `show databases` 查看所有可访问的数据库,用 `db` 命令查看当前数据库。注意,集合仅在插入数据后才会真正创建。数据库命名需遵循 UTF-8 格式,避免特殊字符,长度不超过 64 字节,且部分名称如 `admin`、`local` 和 `config` 为系统保留。删除数据库可通过 `db.dropDatabase()` 实现,主要用于移除已持久化的数据库。
589 0

相关实验场景

更多